Advertisement

The aquatic macrophytes of Lake Vechten. Species composition, spatial distribution and production

  • Elly P. H. Best
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 11)

Abstract

The macrophytic species compositions in Lake Vechten of 1963 and 1979–80 were compared and showed a considerable change. The main vegetation types were mapped in 1973, 1978, 1979 and 1980. All macrophytic communities, i.e. submerged, floating-leaved and emergent vegetation types, declined mainly due to increasing water turbidity, increasing tree-shading and, from 1978 onwards, grazing and trampling by cattle.

Production rates, derived from different combinations of measurement and calculation, were compared. The macrophytes contributed only about 7% to the total lake production in 1980.

Keywords

macrophytes species inventory production rate biomass simulation models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. S. & McCracken, M. D., 1974. Seasonal production of the Myriophyllum component of the littoral of lake Wingra, Wisconsin. J. Ecol. 62: 457–467.CrossRefGoogle Scholar
  2. Assis Esteves, F. de, 1979. Die Bedeutung der Aquatischen Makrophyten für den Stoffhaushalt des Schöhsees. I. Die Produktion an Biomasse. Arch. Hydrobiol. Suppl. 57: 117–143.Google Scholar
  3. Bernatowicz, S., 1969. Macrophytes in the lake Warniak and their chemical composition. Ekol. Pol. 17: 447–465.Google Scholar
  4. Best, E. P. H., 1980. The submerged aquatic macrophytes in lake Maarsseveen — I. Species composition, spatial distribution and productivity. In: Ringelberg, J. (Ed.) Limnological Research in the Maarsseveen Lakes 1975–1980, pp. 205–219. Dept. of Aquatic Ecology, Univ. of Amsterdam.Google Scholar
  5. Best, E. P. H., 1981. A preliminary model for growth of Ceratophyllum demersum L. Verh. int. Verein. Limnol. 21: 1484–1491.Google Scholar
  6. Best, E. P. H., Blaauboer, M. C. I., Cappenberg, Th. E., Göns, H. J., Gulati, R. D., Kloet, W. A. de, Steenbergen, C. L. M. & Verdouw, H., 1978. Towards an integrated study of the ecosystem of Lake Vechten. Hydrobiol. Bull. 12: 107–118.CrossRefGoogle Scholar
  7. Best, E. P. H. & Dassen, J. H. A., 1982 (in prep.). Characteristics of growth and productivity of the submerged aquatic macrophyte Ceratophyllum demersum L.Google Scholar
  8. Best, E. P. H. & Kersting, K., 1981. Comparison of different methods to measure the oxygen exchange in a Ceratophyllum community. Proc. 1st European Workshop on aquatic macrophytes. Illmitz, 3–10 may 1981 (in press).Google Scholar
  9. Best, E. P. H. & Meulemans, J. T., 1979. Photosynthesis in relation to growth and dormancy in Ceratophyllum demersum. Aquat. Bot. 6: 53–67.CrossRefGoogle Scholar
  10. Best, E. P. H., Zippin, M. & Dassen, J. H. A., 1982. Growth and production of Phragmites australis in lake Vechten (The Netherlands). Hydrobiol. Bull. 15: 165–173.CrossRefGoogle Scholar
  11. Blaauboer, M. C. I., 1982. The phytoplankton species composition and the seasonal periodicity in Lake Vechten from 1956 to 1975. Hydrobiologia 95: 25–36.CrossRefGoogle Scholar
  12. Carignan, R. & Kalff, J., 1980. Phosphorus sources for aquatic weeds: water or sediments? Science 207: 987–989.PubMedCrossRefGoogle Scholar
  13. Carpenter, S. R., 1979. Submersed aquatic vegetation and the process of eutrophication. Ph. D. thesis, Univ. Wisconsin. 158 pp.Google Scholar
  14. Dassen, J. H. A., 1981. Comparison of the productivities in emergent, floating-leaved and submerged aquatic macrophytes. Internal Rep. 1981–15, Limnological Institute, Nieuwersluis, The Netherlands (in Dutch, English summary ).Google Scholar
  15. Davies, G. S., 1970. Productivity of macrophytes in Marion Lake, British Columbia. J. Fish. Res. Bd. Can. 27: 71–81.CrossRefGoogle Scholar
  16. Dawson, F. H., 1973. The production ecology of Ranunculus penicillatus var. calcareus in relation to the organic input into a chalk stream. Ph. D. thesis, Birmingham, Univ. of Aston. 356 pp.Google Scholar
  17. Dvorak, J. & Best, E. P. H., 1982. Macro-invertebrate communities associated with water vegetation in Lake Vechten. Netherlands) Hydrobiologia 95: 115–126.CrossRefGoogle Scholar
  18. Dykyjova, D., 1978. Primary production and production processes in littoral plant communities. In: Dykyjova, D. & Kvet, (Eds.) Springer Verlag, Berlin.Google Scholar
  19. Edwards, R. W. & Owens, M., 1962. The effects of plants on river conditions — IV. The oxygen balance of a chalk stream. J. Ecol. 50: 207–220.CrossRefGoogle Scholar
  20. Fassett, N. C., 1975. A Manual of Aquatic Plants. The University of Wisconsin Press, Madison. 405 pp (1st publ. 1940 ).Google Scholar
  21. Fiala, K., 1973. Growth and production of underground organs of Typha angustifolia L., Typha latifolia L. and Phragmites communis Trin. Pols. Arch. Hydrobiol. 20: 59–66.Google Scholar
  22. Filbin, G. E., 1980. Photosynthesis, photorespiration and primary productivity in floating, floating-leaved and emergent plants. Ph. D. thesis, Wayne State Univ., Detroit. 252 pp.Google Scholar
  23. Gerloff, G. C. & Krombholz, P. H., 1966. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnol. Oceanogr. 11: 529–537.CrossRefGoogle Scholar
  24. Gons, H. J., 1982. Structural and functional characteristics of epiphyton and epipelon in relation to their distribution in Lake Vechten. Hydrobiologia 95: 79–114.CrossRefGoogle Scholar
  25. Goudriaan, J. & Laar, H. H. v., 1978. Calculation of daily totals of the gross C02 assimilation of leaf canopies. Neth. J. agric. Sci. 26: 373–382.Google Scholar
  26. Goulder, R., 1970. Day-time variations in the rates of production by two natural communities of submerged freshwater macrophytes. J. Ecol. 58: 521–528.CrossRefGoogle Scholar
  27. Gulati, R. D., Siewertsen, K. & Postema, G., 1982. Zooplankton: its structure, food and feeding, and role in the ecosystem of Lake Vechten. Hydrobiologia 95: 127–163.CrossRefGoogle Scholar
  28. Haslam, S. M., Sinker, Ch. & Wolseley, P., 1975. British water plants. Field Stud. 4: 243–351.Google Scholar
  29. Heukels, H. & v. Ooststroom, S. J., 1970. Flora van Nederland; 16e dr. Wolters-Noordhoff, Groningen. 908 pp.Google Scholar
  30. Hough, R. A., 1974. Photorespiration and productivity in submersed aquatic vascular plants. Limnol. Oceanogr. 19: 912–927.CrossRefGoogle Scholar
  31. Hough, R. A. & Wetzel, R. G., 1977. Photosynthetic pathways of some aquatic plants. Aquat. Bot. 3: 297–313.CrossRefGoogle Scholar
  32. Ikusima, I., 1970. Ecological studies on the productivity of aquatic plant communities. IV: Light condition and community photosynthetic production. Bot. Mag. Tokyo 83: 330–341.Google Scholar
  33. Jones, R. C., 1980. Primary production, biomass, nutrient, limitation, and taxonomic composition of algal communities epiphytic on the submersed macrophyte Myriophyllum spicatum L. in a hardwater, eutrophic lake. Ph. D. thesis, Univ. of Wisconsin. 200 pp.Google Scholar
  34. Kajak, Z., Hillbricht-Ilkowska, A. & Pieczynska, E., 1972. The production processes in several Polish lakes. In: Kajak, Z. & Hillbricht-Ilkowska, A. (Eds.) Productivity Problems of Freshwaters. Warsaw & Krakow, Polish Sci. Publ. 129–147.Google Scholar
  35. Kloet, W. A. de, 1982. The primary production of phytoplankton in Lake Vechten (The Netherlands). Hydrobiologia 95: 37–57.CrossRefGoogle Scholar
  36. Kvet, J., 1971. Growth analysis approach to the production ecology of reed swamp plant communities. Hydrobiologia 12: 15–40.Google Scholar
  37. Mathews, C. P. &!Westlake, D. F., 1969. Estimation of production by populations of higher plants subject to high mortality. Oikos 20: 156–160.Google Scholar
  38. Olsen, S., 1967. Recent trends in the determination of phosphate in the aquatic environment. In: Golterman, H. L. & Clymo, R. S., (Eds.), Olsen, S.. 71–78. Amsterdam.Google Scholar
  39. Ondok, J. P. & Gloser, J., 1978. Net photosynthesis and dark respiration in a stand of Phragmites communis. Trin. calculated by means of a model. I. Description by means of the model II. Results. Photosynthetica 12: 328–336; 337–343.Google Scholar
  40. Penning de Vries, F. W. T., 1975. The cost of maintenance processes in plant cells. Ann. Bot. 39: 77–92.Google Scholar
  41. Raam, J. v., 1977. Velddeterminatietabel voor de Nederlandse kranswieren. GewestGooien Vechtstreek, Hilversum. 10 pp.Google Scholar
  42. Rich, P. H., Wetzel, R. G. & Thuy, N. V., 1971. Distribution, production and role of aquatic macrophytes in a southern Michigan marl lake. Freshwat. Biol. 1: 3–21.CrossRefGoogle Scholar
  43. Schierup, H. H., 1970. Preliminary investigations on variation in biomass of Phragmites communis Trin., M. S. thesis, Univ. of Aarhus.Google Scholar
  44. Sculthorpe, C. D., 1967. The biology of Aquatic Vascular Plants. Edward Arnold, London. 610 pp.Google Scholar
  45. Sondergaard, M., 1979. Light and dark respiration and the effect of the lacunal system on respiration of C02 in submersed aquatic plants. Aquat. Bot. 6: 269–283.CrossRefGoogle Scholar
  46. Sorokin, Y., 1972. Biological productivity of the Rybinsk reservoir. In: Kajak, A. & Hillbricht-Ilkowska, A. (Eds.). Productivity Problems of Freshwaters, pp. 493–503. P. W. N. Warszawa-Krakow.Google Scholar
  47. Stanley, R. A. & Naylor, A. W., 1972. Photosynthesis in Eurasian watermilfoil (Myriophyllum spicatum L.). Plant Physiol. 50: 149–151.PubMedCrossRefGoogle Scholar
  48. Steemann-Nielsen, E., 1952. The use of radio-active carbon for measuring organic production in the sea. J. Cons. 18: 117–1140.CrossRefGoogle Scholar
  49. Steenbergen, C. L. M., 1982. Contribution of photosynthetic sulphur bacteria to primary production in Lake Vechten. Hydrobiologia 95: 59–64.CrossRefGoogle Scholar
  50. Steenbergen, C. L. M. & Verdouw, H., 1982. Lake Vechten: aspects of its morphometry, climate, hydrology and physico-chemical characteristics. Hydrobiologia 95: 11–23.CrossRefGoogle Scholar
  51. Thompson, K., 1975. Production of Cyperus papyrus cited by D. F. Westlake. In: Cooper, J. P. (Ed.) Photosynthesis and Productivity in Different Environments. Cambridge University Press, Cambridge. 190 pp.Google Scholar
  52. Titus, J. E., 1977. The comparative physiological ecology of three submersed macrophytes. Ph. D. thesis, the Univ. of Wisconsin, Madison.Google Scholar
  53. Titus, J. E., Goldstein, R. A., Adam, M. S., Mankin, J. B., O’Neill, R. V., Weiler, Jr. P. R., Shugart, H. H. & Booth, R. S., 1975. A production model for Myriophyllum spicatum L. Ecology 56: 1 129–1 138.Google Scholar
  54. Throughton, J. H. & Slatyer, R. O., 1969. Plant water status leaf temperature, and the calculated mesophyll resistance to carbon dioxide of cotton leaves. Aust. J. biol. Sci. 22: 815–827.Google Scholar
  55. Velde, G. v. d., 1980. Studies in nymphaeid-dominated systems with special emphasis on those dominated by Nymphoides peltata (Gruel.) O. Kuntze (Menyanthaceae). Ph. D. thesis, Nijmegen, The Netherlands.Google Scholar
  56. Verdouw, H. & Dekkers, E. M. J., 1982. Nitrogen cycle of Lake Vechten: concentration patterns and internal mass-balance. Hydrobiologia 95: 191–197.CrossRefGoogle Scholar
  57. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde, Tweede Reeks, 1978. Steenbergen, C. L. M. & Mei, D. v. d. (Eds.): 71: 24–26.Google Scholar
  58. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde, Tweede Reeks, 1979. Parma, S. (Ed.) 73: 38–40.Google Scholar
  59. Westlake, D. F., 1975. Primary production of freshwater macrophytes. In: Photosynthesis and Productivity in Different Environments. Cooper, J. P. (Ed.), pp. 189–207. Cambridge University Press, London.Google Scholar
  60. Wetzel, R. G., 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a large, shallow lake. Int. Revue ges. Hydrobiol. 49: 1–64.CrossRefGoogle Scholar
  61. Wetzel, R. G., 1965. Techniques and problems of primary productivity measurements in higher aquatic plants and periphyton. Proc. I.B.P. Symp. on Primary Productivity in Aquatic Environments, Pallanza, Italy, pp. 251–267.Google Scholar
  62. Wetzel, R. G., 1975. Limnology, pp. 355–418. W. B. Saunders, Philadelphia.Google Scholar
  63. Wetzel, R. G., Rich, P. H., Miller, M. C., Allen, H. L., 1972. Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Proc. I.B.P.-Unesco Symp. on Detritus and its Role in Aquatic Ecosystems, Pallanza, Italy, pp. 187–243.Google Scholar
  64. Winberg, G., Babitsky, V., Gabrilov, S., Gladley, G., Zakharenkov, I., Kovalevskaya, R., Mikheeva, T., Nevyadomskaya, P., Ostpenya, A., Petrovich, P., Potaenko, J. & Yakushko, O., 1972. Biological productivity of different types of lakes. Proc. I.B.P.-Unesco Symp. on Detritus and its Role, in Aquatic Ecosystems, Pallanza, Italy, pp. 383–404.Google Scholar
  65. Whigham, D. F., Me Cormick, J., Good, R. E. & Simpson, R. L., 1978. Biomass and primary production in freshwater tidal wetlands of the middle Atlantic coast. In: Good, R. E., Whigham, D. F. & Simpson, R. L. (Eds.) Freshwater Wetlands. Ecological Processes and Management Potential, pp. 3–21.Google Scholar
  66. Wit, C. T. de, 1978. Simulation of assimilation, respiration and transpiration of crops. Simulation Monographs, PUDOC, Wageningen, The Netherlands.Google Scholar
  67. Wood, R. D. & Imahori, K., 1965. A Revision of the Characeae, Monograph and Iconograph. Verlag von J. Cramer, Weinheim. 904 pp.Google Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1982

Authors and Affiliations

  • Elly P. H. Best
    • 1
  1. 1.‘Vijverhof’ LaboratoryLimnological InstituteNieuwersluisThe Netherlands

Personalised recommendations