The primary production of phytoplankton in Lake Vechten

  • W. A. de Kloet
Part of the Developments in Hydrobiology book series (DIHY, volume 11)


The primary production of the phytoplankton of Lake Vechten (The Netherlands) (area, 4.7 ha; mean depth, 6 m), an unpolluted and stratified sandpit was investigated from 1969 to 1980 (except in 1971, 1975 and 1976) by the in situ 14C-technique. Other data collected include: solar radiation, transparency, oxygen and thermal structure. In winter and spring diatoms, Cryptophyceae and Chlorococcales were important algal groups, while in summer Dinophyceae and Chrysophyceae were important. The chlorophyll-a concentration was compared to the cellular biovolumes (= fresh weight) of the most abundant phytoplankton species. The primary production maxima occurred in winter, spring and during the summer stratification. The vertical profiles of photosynthesis exhibit light inhibition at surface to a maximum of 4 m. The maximum of zooplankton grazing in May-June caused a sharp decrease in the phytoplankton biomass and seston concentration accompanied by the highest transparency (‘clear water’ phase).

The values for cellular C-fixation range from 10 to 1 307 mg C · M-2 · day-1 (annual mean of 280 mg C · m-2 · day-1). High dark fixation (up to 100%) was encountered in the metalimnion and hypolimnion from July to October together with peaks of 14C-fixation due to a crowding of phytoplankton and phototrophic anoxic bacteria. Extracellular excretion by phytoplankton, investigated in 1977 to 1979, was 15% of the annual mean of the total C-fixation. The photosynthetic efficiency, turnover rates, and activity coefficients were low, particularly in the summer months when Ceratium hirundinella was predominant. The seasonal variations were controlled mainly by solar radiation and probably phosphate, the former being more important in the non-stratification period and the latter during the stratification period.


primary production extracellular excretion chlorophyll-a phytoplankton stratified lake phototrophic bacteria biomass turnover rates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren, G., 1970. Limnological studies of lake Norrviken an eutrophicated Swedish lake. II. Phytoplankton and its production. Schweiz. Z. Hydrol. 32: 353–396.CrossRefGoogle Scholar
  2. Antia, N. J., McAllister, C. D., Parsons, T. R., Stephens, K., & Strickland, J. D. H., 1963. Further measurements of primary production in using a large volume plastic sphere. Limnol. Oceanogr. 8: 166–183.CrossRefGoogle Scholar
  3. Best, E. P. H., 1982. The aquatic macrophytes of Lake Vechten. Species composition, spatial distribution and production. Hydrobiologia 95: 65–77.CrossRefGoogle Scholar
  4. Blaauboer, M. C. I., 1982. The phytoplankton species composition and the seasonal periodicity in Lake Vechten from 1956 to 1979. Hydrobiologia 95: 25–36.CrossRefGoogle Scholar
  5. Blaauboer, M. C. I., Cappenberg, Th. E., & Van Keulen, R., 1982. Extracellular release of photosynthetic products by freshwater phytoplankton populations, with special reference to the algal species involved. Freshwat. Biol. 12 (6).Google Scholar
  6. Desortová, B., 1981. Relationship between chlorophyll-a concentration and phytoplankton biomass in several reservoirs in Czechoslovakia. Int. Revue ges. Hydrobiol. 66: 153–169.CrossRefGoogle Scholar
  7. Devol, A. H., & Packard, T. T., 1978. Seasonal changes in respiratory enzyme activity and productivity in Lake Washington microplankton. Limnol. Oceanogr. 23: 104–112.CrossRefGoogle Scholar
  8. Dorgelo, J., & De Graaf Bierbrauwer, I., 1981. Phytoplankton in Lake Maarsseveen. I (1977–1979). Hydrobiol. Bull. 15: 29–40.CrossRefGoogle Scholar
  9. Dring, M.J., & Jewson, D. H., 1979. What does 14C-uptake really measure? A fresh approach using a theoretical model. Br. phycol. J. 14: 122–123.Google Scholar
  10. Flik, B. J. G., & Keyzer, A., 1981. Estimation of the primary production in Lake Maarsseveen I with an incubator. Hydrobiol. Bull. 15: 41–50.CrossRefGoogle Scholar
  11. George, D. G., & Heaney, S. I., 1978. Factors influencing the spatial distribution of phytoplankton in a small productive lake. J. Ecol. 66: 133–155.CrossRefGoogle Scholar
  12. Goldman, C. R., Gerletti, M., Javornicky, P., Melchiorri, U., & De Amezaga, E., 1968. Primary productivity, bacteria, phy- to- and zooplankton in Lake Maggiore: correlations and relationships with ecological factors. Mem. 1st. ital. Idrobiol. 23: 49–127.Google Scholar
  13. Golterman, H. L., 1975. Freshwater Limnology. Elsevier. Amsterdam.Google Scholar
  14. Golterman, H. L., & Clymo, R. S., 1969. Methods for Chemical Analysis of Freshwater. I. B. P. Handbook, No. 8. Blackwell Scientific, Oxford. 172 pp.Google Scholar
  15. Golterman, H. L., & Kouwe, F. A., 1980. Chemical budgets and nutrient pathways. In: LeCren, E. D., & Lowe-McConnell, R. H. (Eds.) The Functioning of Freshwater Ecosystems, pp. 85–141. I.B.P. No. 22. Cambridge Univ. Press.Google Scholar
  16. Gons, H., 1981. Project ‘Carbon cycle in Lake Vechten’. In: Progress Report Limnological Institute 1980. Verh. k. ned. Akad. Wetensch., Afd. Natuurk. 2de Rs. 77: 30–36.Google Scholar
  17. Gons, H., 1982. Structural and functional characteristics of epiphyton and epipelon in relation to their distribution in Lake Vechten. Hydrobiologia 95: 79–114.CrossRefGoogle Scholar
  18. Gulati, R. D., 1972. Limnological studies on some lakes in the Netherlands I: Wijde Blik. Freshwat. Biol. 2: 37–54.CrossRefGoogle Scholar
  19. Gulati, R. D., 1976. Some limnological observations of the Oos- telijke Vechtplassen. Hydrobiol. Bull. 10: 3–10.CrossRefGoogle Scholar
  20. Gulati, R. D., Siewertsen, K., & Postema, G., 1981. Phytoplankton-zooplankton interactions. In: Progress Report Limnological Institute 1980. Verh. k. ned. Akad. Wetensch., Afd. Natuurk., 2de Rs. 77: 12–16.Google Scholar
  21. Gulati, R. D., Siewertsen, K., & Postema, G., 1982. The zoo- plankton: its community structure, food and feeding, and role in the ecosystem of Lake Vechten. Hydrobiologia 95: 127–163.CrossRefGoogle Scholar
  22. Hallegraef, G. M., 1976. Pigment diversity, biomass and species diversity of phytoplankton of three Dutch lakes. Ph.D. thesis, Univ. of Amsterdam. 177 pp.Google Scholar
  23. Happey-Wood, C. M., 1975. Distinctions in algal ecology and production in two linked upland lakes, Gwynedd, N. Wales. Verh. int. Ver. Limnol. 19: 1045–1056.Google Scholar
  24. Harris, G. P., 1980. The measurements of photosynthesis in natural population of phytoplankton. In: I. Morris, (Ed.). The Physiological Ecology of Phytoplankton. Studies in Ecology, Vol. 7. Blackwell Scientific, Oxford.Google Scholar
  25. Harris, G. P., Heaney, S. I., & Tailing, J. F., 1979. Physiological and environmental constraints in the ecology of the plank- tonic dinoflagellate Ceratium hirundinella. Freshwat. Biol. 9: 413–428.CrossRefGoogle Scholar
  26. Heaney, S. I., 1976. Temporal and spatial distribution of the dinoflagellate Ceratium hirundinella O. F. Miiller within a small productive lake. Freshwat. Biol. 6: 531–542.CrossRefGoogle Scholar
  27. Jónasson, P. M., & Adalsteinsson, H., 1979. Phytoplankton production in shallow eutrophic lake Myvatn, Iceland. Oikos 32: 113–138.CrossRefGoogle Scholar
  28. Kalff, J., 1972. Netplankton and nanoplankton production and biomass in a northern temperate zone lake. Limnol. Oceanogr. 17: 712–720.CrossRefGoogle Scholar
  29. Kloet, W. A. de, 1971. Het eutrofi’eringsproces van het IJsselmeer. Meded. Hydrobiol. Ver. 5: 23–38. (in Dutch)Google Scholar
  30. Kristiansen, J., & Mathiesen, H., 1964. Phytoplankton of the Tystrup Barcelse Lakes, primary production and standing crop. Oikos 15: 1–43.CrossRefGoogle Scholar
  31. Lean, D. R. S., & Burnison, B. K., 1979. An evaluation of errors in the 14C-method of primary production measurements. Limnol. Oceangr. 24: 917–928.CrossRefGoogle Scholar
  32. Malone, T. C., & Neale, P. J., 1981. Parameters of light dependent photosynthesis for phytoplankton size fractions in temperate estuarine and coastal environments. Mar. Biol. 61: 289–297.CrossRefGoogle Scholar
  33. McAllister, C. D., Shaw, N., & Strickland, J. D. H., 1964. Marine phytoplankton photosynthesis as a function of light intensity: a comparison of methods. J. Fish. Res. Bd Can. 21: 159–181.CrossRefGoogle Scholar
  34. Moed, J. R., 1973. Effect of combined action of light and silicon depletion on Asterionella formosa Hass. Verh. int. Verein. Limnol. 18: 1367–1374.Google Scholar
  35. Moed, J. R., & Hallegraeff, G. M., 1978. Some problems in the estimation of chlorophyll-tf and phaeopigments from pre- and post-acidification spectrophotometric measurements. Int. Revue ges. Hydrobiol. 63: 787–800.CrossRefGoogle Scholar
  36. Moore, J. W., 1981. Seasonal abundance of Ceratium hirundinella (O. F. Miiller) Schrank in lakes of different trophy. Arch. Hydrobiol. 92: 535–548.Google Scholar
  37. Moss, B., 1980. Phytoplankton biomass. In: LeCren, E. D., & Lowe-McConnell, R. H. (Eds.) The Functioning of Freshwater Ecosystems, pp. 146–149. I.B.P., No. 22. Cambridge Univ. Press.Google Scholar
  38. Nicholls, K. H., & Dillon, P. J., 1978. Anevaluation of phosphorus-chlorophyll-phytoplankton relationships for lakes. Int. Revue ges. Hydrobiol. 63: 141–154.CrossRefGoogle Scholar
  39. Opstelten, W., 1981. Diel patterns of phytoplankton productivity in Lake Vechten. Hydrobiol. Bull. 14: 219–221.CrossRefGoogle Scholar
  40. Reynolds, C. S., 1976. Succession and vertical distribution in response to thermal stratification in a lowland mere, with special reference to nutrient availability. J. Ecol. 64: 529–551.CrossRefGoogle Scholar
  41. Rodhe, W., 1958. The primary production in lakes: some results and restrictions of the 14C-method. Rapp. Procès Verb. Réunions. J. Cons. perm. int. Explor. Mer 144: 122–128.Google Scholar
  42. Rodhe, W., 1969. Crystallization of eutrophicationconcepts. In: Rohlich, G. A. (Ed.) Eutrophication, Causes, Consequences, Corrections, pp. 50–65. Nat. Acad. Sci., Washington.Google Scholar
  43. Rodhe, W., Vollenweider, A., & Nauwerck, A., 1958. The primary production and standing crop of phytoplankton. In: Buzzati-Traverso, A. A. (Ed.), Perspective in Marine Biology pp. 323–349. Univ. of California.Google Scholar
  44. Schmidt-van Dorp, A. D., 1978. De eutrofiëring van ondiepe merenin Rijnland(Holland). Ph.D. thesis, State University, Utrecht. 254 pp. (in Dutch, with English summary).Google Scholar
  45. Søndergaard,M., 1980. Adsorption of inorganic 14C to poly-ethylene scintillation vials, a possible source of error of organic C. Arch. Hydrobiol. 90: 362–366.Google Scholar
  46. Steemann-Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. perm, int. Explor. Mer 18: 117–140.Google Scholar
  47. Steemann-Nielsen, E., 1963. Production, definition and measurements. In: Mill, M. H.(Ed.) The Sea, Vol. 2,pp. 129–164. Interscience, New York.Google Scholar
  48. Steemann-Nielsen, E., 1975. Marine Photosynthesis. Elsevier Scientific, Amsterdam.Google Scholar
  49. Steenbergen, C. L. M., 1982. Contribution of photosynthetic sulphur bacteria to primary production in Lake Vechten. Hydrobiologia 95: 59–64.CrossRefGoogle Scholar
  50. Steenbergen, C. L. M., & Verdouw, H., 1982. Lake Vechten: aspects of its morphometry, climate, hydrology and physico- chemical characteristics. Hydrobiologia 95: 11–23.CrossRefGoogle Scholar
  51. Talling,J. F., 1971. Theunderwaterlightclimateasacontrolling factor in the production ecology of freshwater phytoplankton. Mitt. int. Verein. Limnol. 19: 214–243.Google Scholar
  52. Tolstoy, A., 1977. Chlorophyll-a as a measure of phytoplankton biomass. Acta Univ. upps. 416: 1–30.Google Scholar
  53. Verdouw, H., & Dekkers, E. M. J., 1982. Nitrogen cycle of Lake Vechten concentration patterns and internal mass-balance. Hydrobiologia 95: 191–197.CrossRefGoogle Scholar
  54. Vollenweider, R., 1960. Beiträge zur Kenntnis optischer Eigen- schaftenderGewässer und Primär Production. Mem. Ist.ital. Idrobiol. 12: 201–245.Google Scholar
  55. Vollenweider, R., 1969. Primary Production in Aquatic Environment. I.B.P. Handbook No. 12, Blackwell Scientific, Oxford.Google Scholar
  56. Wetzel, R. G., 1975. Limnology. Saunders, Philadelphia.Google Scholar
  57. Winberg, G. P. (Ed.), 1971. Symbols, Units and Conversion Factors in Studies of Freshwater Productivity. I.B.P., London.Google Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1982

Authors and Affiliations

  • W. A. de Kloet
    • 1
  1. 1.‘Vijverhof’ LaboratoryLimnological InstituteNieuwersluisThe Netherlands

Personalised recommendations