Advertisement

INSTAR, a discrete event model for simulating zooplankton population dynamics

  • P. Hogeweg
  • A. F. Richter
Chapter
  • 69 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 11)

Abstract

In this paper we discuss the basic principles of discrete event, individual oriented, data based modelling in ecology, and we present an application of this modelling strategy. The strategy is contrasted with some more conventional modelling strategies with respect to its purpose, its basic units and its heuristic properties.

INSTAR applies this modelling strategy to the simulation of the fluctuations of the population structure and density of microcrustaceans through the year. The model encompasses one microcrustacean species at a time, and its interface with the rest of the ecosystem; it has been applied to several Cladocera and Copepoda species in a shallow eutrophic lake in the Netherlands (Vijverberg and Richter 1982a, b). Possibilities for extending the model are discussed.

Keywords

simulation model zooplankton population dynamics discrete event formalism individual-oriented modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argentesi, F. R., Bernardi, R. de and Di Cola, G., 1974. Mathematical models for the analysis of population dynamics in species with continuous recruitment. Mem. 1st. ital. Idrobiol. 31: 245–275.Google Scholar
  2. Bernardi, R. de, 1974. The dynamics of a population of Daphnia hyalina Leydig in Lago Maggiore, Northern Italy. Mem. 1 st. ital. Idrobiol. 31: 221–243.Google Scholar
  3. Bernardi, R. deand DiCola, G., 1976. Instantaneous growth rates and production in natural zooplankton populations. Mem. 1st. ital. Idrobiol. 33: 105–123.Google Scholar
  4. Bottrell, H. H., 1975a. Generation time, length of life, instar duration and frequency of moulting, and their relation to temperature in eight species of Cladocera from the River Thames, Reading. Oecologia 19: 129–140.CrossRefGoogle Scholar
  5. Bottrell, H. H., 1975b. The relationship between temperature and duration of egg-development in some epiphytic Cladocera and Copepoda from the River Thames, Reading, with a discussion of temperature functions. Oecologia 18: 63–84.Google Scholar
  6. Dahl, O. J., Myhrhaug, B. and Nygaard, K., 1970. Simula information common base language. Norwegian Computing Center, Publ. No. S. 22Google Scholar
  7. Dussart, B., 1969. Les Copepodes des eaux continentales d’Europe occidentale, Tome 2: Cyclopoides et biologie. Boubee, Paris, 292 pp.Google Scholar
  8. Hogeweg, P., 1974. Concept for simulation, a comparison based on simulation languages. In: Buffort, H. F. J. M. and J. H. L. (Eds.) Developments in Systems Theory, Vol. I, pp. 119–135. Stenfert Kroese, Leiden.Google Scholar
  9. Hogeweg, P. and Hesper, B., 1978. Interactive instruction on population interactions. Comput. Biol. Med. 8: 319–327.PubMedCrossRefGoogle Scholar
  10. Hogeweg, P. & Hesper, B., 1979. Heterarchical selfstructuring simulation systems, concept and applications in biology. In: Zeigler, B.P. (Ed.) Methodologies of Modelling & Simulation, pp. 221–231. North-Holland.Google Scholar
  11. Hogeweg, P. & Hesper, B., 1981a. Two predators and a prey in a patchy environment; an application of MICMAC modelling. J. theor. Biol. 93: 311–332.CrossRefGoogle Scholar
  12. Hogeweg, P. and Hesper, B., 1981 b. On the role of OBSERVERS in large scale systems. In: Proc. of the UKSC/81 Conf. on Computer Simulation, Harrogate, England, pp. 420–425. Westbury House.Google Scholar
  13. Hogeweg, P. and Hesper, B., 1981c. Selfstructuring simulation systems. In: Oren, T. (Ed.) Proc. Cybersoff Symposium, Namur (Belgium).Google Scholar
  14. Lotka, A. J., 1925. Elements of Physical Biology. Williams and Wilkins, Baltimore.Google Scholar
  15. Miller, C. B., Johnson, J. K. and Heinle, D. R., 1977. Growth rules in the marine copepod genus Acartia. Limnol. Oceanogr. 22: 326–335.CrossRefGoogle Scholar
  16. Mac Mahon, J. A., Schimpf, D. J., Andersen, D. C., Smith, K. G. and Bayn, R. L., Jr., 1981. An organism centered approach to some community and ecosystem concepts. J. theor. Biol. 88: 287–308.CrossRefGoogle Scholar
  17. Nicholson, A. J., 1933. The balance of animal population. J. Anim. Ecol. 2: 132–178.CrossRefGoogle Scholar
  18. Volterra, V., 1926. Variazione e fluttuazioni del numero d’individui in specie animali canviventi Mem. Accad. Nazi. Lincei 2: 31–113 (transl. in Chapman, R. N., 1931, Animai Ecology, McGraw Hill, New York ).Google Scholar
  19. Vijverberg, J., 1976. The effect of food quantity and quality on the growth, birth rate and longevity of Daphnia hyalina Leydig. Hydrobiologia 51: 99–109.CrossRefGoogle Scholar
  20. Vijverberg, J., 1980. Effect of temperature on laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshwat. Biol. 10: 317–340.CrossRefGoogle Scholar
  21. Vijverberg, J. and Richter, A. F., 1982a. Population dynamics and production of Daphnia hyalina Leydig and Daphnia cuculiata Sars in Tjeukemeer. Hydrobiologia 95: 235–259.CrossRefGoogle Scholar
  22. Vijverberg, J. and Richter, A. F., 1982b. Population dynamics and production of Acanthocyclops robustus (Sars) and Mesocy- clops leuckarti (Claus) in Tjeukemeer. Hydrobiologia 95: 261–274.CrossRefGoogle Scholar
  23. Zeigler, B. P., 1976. Theory of Modelling and Simulation. John Wiley, New York.Google Scholar
  24. Zeigler, B. P., 1978. Multi-model, multi-formalism modelling; an ecosystem example. In: Halfon, E. (Ed,) Theoretical Ecosystems. Academic Press.Google Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1982

Authors and Affiliations

  • P. Hogeweg
    • 1
  • A. F. Richter
    • 2
  1. 1.BioinformaticaUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Tjeukemeer LaboratoryLimnological InstituteOosterzeeThe Netherlands

Personalised recommendations