Sedimentation and breakdown kinetics of organic matter in the anaerobic zone of Lake Vechten

  • Th. E. Cappenberg
  • H. Verdouw
Part of the Developments in Hydrobiology book series (DIHY, volume 11)


The turnover and exchange rates, as well as the sedimentation rates concerning the input and output of carbon in the anaerobic hypolimnion and the sediment in Lake Vechten were studied. The carbon input data were derived from those on sedimentation. By comparison of C-fixation data, sedimentation rates measurements and microbial reduction rates of observed fluxes of electron acceptors a mineralization of 20–30% of the limnetic C-fixation was found in the hypolimnion. The rate-limiting step of methanogenesis in anaerobic mineralization is the breakdown of algal cell wall components to their main product, namely acetate. This intermediate has a relatively fast turnover rate to the end-products, namely the gases CH4 and C02. Finally, from the data on the diffusion of low-molecular weight metabolic intermediates and on the rates of formation of CH4 and C02, the output of carbon and its cycling in Lake Vechten are discussed.


sedimentation rates turnover rates carbon recycling anaerobic mineralization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, J. M. & Jacobsen, O. S., 1979. Production and decomposition of organic matter in eutrophic Frederiksborg Slotssö, Denmark. Arch. Hydrobiol. 85: 511–542.Google Scholar
  2. Blaauboer, Marianne C. I., Keulen, R. van, Cappenberg, Th. E., 1982. Extracellular release of photosynthetic products by freshwater phytoplankton populations, with special reference to the algal species involved. Freshwat. Biol, (in press.)Google Scholar
  3. Bioesch, J. & Burns, N. M., 1980. A critical review of sedimentation trap technique. Schweiz. Z. Hydrol. 42: 15–55.CrossRefGoogle Scholar
  4. Blomqvist, S. & Håkanson, L., 1981. A review on sediment traps in aquatic environments. Arch. Hydrobiol. 91: 101–132.Google Scholar
  5. Cappenberg, Th. E., 1972. Ecological observations on heterotrophic, methane oxidizing and sulfate reducing bacteria in a pond. Hydrobiologia 40: 471–485.CrossRefGoogle Scholar
  6. Cappenberg, Th. E., 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations. Antonie van Leeuwenhoek 40: 285–295.PubMedCrossRefGoogle Scholar
  7. Cappenberg, Th. E., 1976. Methanogenesis in the bottom deposits of a small stratifying lake. In: Schlegel, H. G., Pfennig, N., Gottschalk, G. (Eds.) Microbial Production and Utilization of Gases, H2, CH4, CO, pp. 125–134. E. Goltze-Verlag, Göttingen.Google Scholar
  8. Cappenberg, Th. E., 1980. Use of radio gas chromatography in studying breakdown processes of organic matter in aquatic ecosystems. In: Agrochemical Residue-Biota Interactions in Soil and Aquatic Ecosystems, pp. 55–66. International Atomic Energy Agency, Vienna.Google Scholar
  9. Cappenberg, Th. E. & Prins, R. A., 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. III. Experiments with 14C-labelled substrates. Antonie van Leeuwenhoek 40: 457–469.PubMedCrossRefGoogle Scholar
  10. Cappenberg, Th. E. & Jongejan, E., 1978. Microenvironments for sulfate reduction and methane production in freshwater sediments. In: Krumbein, W. E. (Ed.). Environmental Biogeochemistry & Geomicrobiology, Vol. 1, pp. 129–138. Ann Arbor sci. Publ.Google Scholar
  11. Cappenberg, Th. E., Hordijk, K. A., Jonkheer, G. J., Lauwen, J. P. M., 1982. Carbon flow across the sediment-water interface in Lake Vechten, The Netherlands. In: Sly, P. G. (Ed.). Sediment/Freshwater Interaction, pp. 161–168. Proc. 2nd. Int. Symp., Kingston, Ontario. Junk, The Hague.Google Scholar
  12. Gasith, A., 1976. Seston dynamics and tripton sedimentation in the pelagic zone of a shallow eutrophic lake. Hydrobiologia 51: 225–231.CrossRefGoogle Scholar
  13. Gulati, R. D., Siewertsen, K. & Postema, G., 1982. The zooplankton: its community structure, food and feeding, and role in the ecosystem of Lake Vechten. Hydrobiologia 95: 127–163.CrossRefGoogle Scholar
  14. Hordijk, C. A. & Cappenberg, Th. E., 1982. Quantitative HPLC-fluorescence determinations of some important lower fatty acids in lake sediments. Appl. envir. Microbiol, (submitted).Google Scholar
  15. Jones, J. G., 1976. The microbiology and decomposition of seston in open water and experimental enclosures in a productive lake. J. Ecol. 64: 241–278.CrossRefGoogle Scholar
  16. Kelly, C. A. & Chynoweth, D. P., 1980. Comparison of in situ and in vitro rates of methane release in freshwater sediments. Appl. envir. Microbiol. 40: 287–293.Google Scholar
  17. Klump, J. V. & Martens, C. S., 1981. Biochemical cycling in an organic-rich coastal marine basin — II. Nutrient sediment-water exchange processes. Geochim. cosmochim. Acta 45: 101–121.CrossRefGoogle Scholar
  18. Kimmel, B. L. & Goldman, C. R., 1977. Production, sedimentation and accumulation of particulate carbon and nitrogen in a sheltered subalpine lake. In: Golterman, H. L. (Ed.) Interactions between Sediments and Freshwater, pp. 148–155. Junk, The Hague.Google Scholar
  19. Lastein, E., 1976. Recent sedimentation and resuspension of organic matter in eutrophic Lake Esrom, Denmark. Oikos 27: 44–49.CrossRefGoogle Scholar
  20. Martens, C. S. & Klump, J. V., 1980. Biochemical cycling in an organic-rich coastal marine basin — I. Methane sediment- water exchange processes. Geochim. cosmochim. Acta, 44: 471–490.CrossRefGoogle Scholar
  21. Molongoski, J. J. & Klug, M. J., 1980. Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake. Freshwat. Biol. 10: 507–518.CrossRefGoogle Scholar
  22. Parma, S., 1971. Chaoborus flavicans (Meigen) (Diptera, Chaoboridae): an autoecological study. Ph.D. thesis, Rijksuniversiteit Groningen. 128 pp.Google Scholar
  23. Sansone, F. J. & Martens, C. S., 1981. Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science 211: 707–709.PubMedCrossRefGoogle Scholar
  24. Steenbergen, C. L. M. & Korthals, H. J., 1982. Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten(The Netherlands). Pigment analysis and role in primary production. Limnol. Oceanogr. (in press).Google Scholar
  25. Steenbergen, C. L. M. & Verdouw, H., 1982. Lake Vechten: aspects of its morphometry, climate, hydrology and physicochemical characteristics. Hydrobiologia 95: 11–23.CrossRefGoogle Scholar
  26. Strayer, R. F. & Tiedje, J. M., 1978. Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment. Appl. envir. Microbiol. 36: 330–340.Google Scholar
  27. Rudd, J. W. M. & Hamilton, R. D., 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol. Oceanogr. 23: 337–348.CrossRefGoogle Scholar
  28. Van Gemerden, H., 1967. On the bacterial sulfur cycle of inland waters. Ph.D. thesis, Rijksuniversiteit Leiden. 110 pp.Google Scholar
  29. Verdouw, H. & Dekkers, E. M. J., 1980. Iron and manganese in Lake Vechten (The Netherlands): dynamics and role in the cycle of reducing power. Arch. Hydrobiol. 89: 509–532.Google Scholar
  30. Verdouw, H. & Dekkers, E. M. J., 1982a. Nitrogen cycle of Lake Vechten (The Netherlands): role of sedimentation. Arch. Hydrobiol. 94: 251–263.Google Scholar
  31. Verdouw, H. & Dekkers, E. M. J., 1982b. Nitrogen cycle of Lake Vechten: concentration patterns and internal mass-balance. Hydrobiologia 95: 191–197.CrossRefGoogle Scholar
  32. Vollenweider, R. A., 1976. Rotsee, a source, not a sink for phosphorus? A comment to and a plea for nutrient balance studies. Schweiz. Z. Hydrol. 38: 29–34.CrossRefGoogle Scholar
  33. Winfrey, M. R. & Zeikus, J. G., 1979. Microbial methanogenesis and acetate metabolism in a meromictic lake. Appl. envir. Microbiol. 37: 213–221.Google Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1982

Authors and Affiliations

  • Th. E. Cappenberg
    • 1
  • H. Verdouw
    • 1
  1. 1.‘Vijverhof’ LaboratoryLimnological InstituteNieuwersluisThe Netherlands

Personalised recommendations