Interaction between interstitial water and sediment in two cores of Lac Léman, Switzerland

  • G. Nembrini
  • J. A. Capobianco
  • J. Garcia
  • J.-M. Jacquet
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 9)

Abstract

The pore fluids of the sediments collected at the deepest point of Lac Léman (Switzerland) are supersaturated with respect to vivianite and siderite. In the presence of sulphide, the iron solubility is controlled entirely by the amorphous iron sulphides. As the iron (II) becomes dominant, the formation of siderite occurs and evidence of this, in the solid phase, can be obtained by the use of Mössbauer spectroscopy and some sequential chemical extractions. The amount of ‘siderite iron’ decreases from about 10% near the sediment surface to a few percent in the lower levels of the sediment (<10 cm). Evidence for vivianite formation could not be obtained even in the lower layers, despite the precautions taken to avoid oxidation. Although the trace metal behaviour in the solid phase is well correlated with the iron and manganese, availability in the pore fluid is dependent on the adsorption on, or co-precipitation with, finely dispersed colloids, which pass through a 0.45 μm filter. Trace metal concentrations in pore fluid were not directly related to total elemental concentrations in the solid phase, and did not reflect cumulative trends associated with anthropogenic enrichment.

Keywords

pore water lake sediments Fe species Mössbauer Mn species heavy metals authigenic mineral phases Lac Leman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony, R. S., 1977. Iron rich rhythmically laminated sediments in Lake of the Clouds, northeastern Minnesota. Limnol. Oceanogr. 22: 45–54.CrossRefGoogle Scholar
  2. Bancroft, G. M., 1973. Mössbauer Spectroscopy. An Introduction for Inorganic Chemists and Geochemists, pp. 189–190. McGraw-Hill, Maidenhead, U.K.Google Scholar
  3. Bergerioux, C. & Haerdi, W., 1980. Co-precipitation of dissolved trace elements. Chem. Analysis 8: 169–173.Google Scholar
  4. Berner, R. A., 1964. Stability fields of iron minerals in anaerobic marine sediments. J. Geol. 72: 826–834.CrossRefGoogle Scholar
  5. Bray, J. T., Bricker, O. P. & Troup, B. N., 1973. Phosphate in interstitial waters of anoxic sediments: oxidation effects during sampling procedure. Science 180: 1362–1364.PubMedCrossRefGoogle Scholar
  6. Carignan, R. & Flett, R. J., 1974. Postdepositional mobility of phosphorus in lake sediments. Limnol. Oceanogr. 26: 361–366.CrossRefGoogle Scholar
  7. Coey, J. M. D., Schindler, D. W. & Weber, F., 1974. Iron compounds in lake sediments. Can. J. Earth Sci. 11: 1489–1493.CrossRefGoogle Scholar
  8. Coey, J. M. D., 1975. Iron in postglacial lake sediment core: a Mössbauer effect study. Geochim. cosmochim. Acta 39: 401–415.CrossRefGoogle Scholar
  9. Davison, W., 1977. The polarographic measurement of O, Fe, Mn and S in hypolimnetic water. Limnol. Oceanogr. 22: 746–753.CrossRefGoogle Scholar
  10. Elderfield, H. & Hepworth, A., 1975. Diagenesis, metals and pollution in estuaries. Mar. Poll. Bull. 6: 85–87.CrossRefGoogle Scholar
  11. Emerson, S., 1976. Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. Geochim. cosmochim. Acta 42: 1307–1316.CrossRefGoogle Scholar
  12. Förstner, U. & Witmann, G. T. W., 1979. Metal pollution in the Aquatic Environment. Springer-Verlag, Berlin. 486 pp.Google Scholar
  13. Garrels, R. M. & Christ, C. L., 1965. Solutions, Minerals and Equilibria. Harper and Row, New York. 450 pp.Google Scholar
  14. Hubert, P., Martin, E., Meyback, M., Oliver, P. & Siwertz, E., 1969. Aspects hydrologique, géochimique et sédimentologique de la crue exceptionelle de la Dranse du Chalbais du 22 sept. 1968. Arch. Sci. Soc. Phys. (Genève) 22: 581–603.Google Scholar
  15. Inoue, Y. & Munemori, M., 1979. Coprecipitation of mercury(II) with iron(III) hydroxide. Env. Sci. Technol. 13: 443–445.CrossRefGoogle Scholar
  16. Jaquet, J. M., Nembrini, G., Garcia, J. & Vernet, J. P., 1982. The Mn cycle in Lac Léman (Switzerland). The role of Metallogenium. ( These proceedings).Google Scholar
  17. Jenne, A. E., 1968. Trace inorganics in water. Adv. Chem. Ser. 73: 337–387.CrossRefGoogle Scholar
  18. Jones, B. F. & Bowser, C. J., 1978. The mineralogy and related chemistry of lake sediments. In: Lerman, A. (Ed.) Lakes- Chemistry, Geology, Physics, pp. 179–235. Springer-Verlag, New York.Google Scholar
  19. Krom, M. D. & Sholkowitz, E. R., 1977. Nature and reactions of dissolved organic matter in the interstitial waters of marine sediments. Geochim. cosmochim. Acta 41: 1565–1573.CrossRefGoogle Scholar
  20. Manning, P. G., 1977. Mössbauer spectral studies of ferric phosphate interactions in sediments underlaying oxic lake waters. Can. Mineral. 12: 120–123.Google Scholar
  21. Manning, P. G. & Ash, L. A., 1978. Môssbauer spectral studies of Lake Erie Sediments. Can. Mineral. 16: 577–580.Google Scholar
  22. Manning, P. G., Williams, J. D. H., Charlton, M. N., Ash, L. A. & Birchall, T., 1979. Mössbauer spectral studies of the diagenesis of iron in sulphide rich sediment core. Nature 280: 134–135.CrossRefGoogle Scholar
  23. Manning, P. G., Jones, W. & Birchall, T., 1980. Mössbauer spectral studies of iron enriched sediments from Hamilton Harbour (Ontario). Can. Mineral. 18: 291–299.Google Scholar
  24. Nembrini, G., Capobianco, J. A., Williams, A. & Viel, M., 1982. Mössbauer evidence for vivianite formation in lago Maggiore sediments. (Submitted to Geochem. cosmochim. Acta).Google Scholar
  25. Perlow, G. J., Potzel, W. & Edginton, D., 1974. Serial study of Lake Michigan sediments by the Fe Mössbauer spectroscopy. J. Phys. (Paris) 35: (Colloq. 6) 547–548.Google Scholar
  26. Potsma, D., 1981. Formation of siderite and vivianite and the pore water composition of a recent bog sediment in Denmark. Chem. Geol. 31: 225–244.Google Scholar
  27. Rapin, F., Davaud, E. & Vernet, J. P., 1978. Etude générale de la pollution des sédiment du Leman. Rapport Comm. int. Protect. Leman. 294–309.Google Scholar
  28. Stumm, W. & Morgan, J. J., 1981. Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd edn., pp. 310–313. John Wiley, New York.Google Scholar
  29. Suess, E., 1979. Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochim. cosmochim. Acta 43, 339–352.CrossRefGoogle Scholar
  30. Swallow, K. C., Hume, D. N. & Morel, F. F., 1980. Sorption of copper and lead by hydrous ferric oxide. Env. Sci. Technol. 14: 1326–1331.CrossRefGoogle Scholar
  31. Tessier, A., Campbell, P. G. C. & Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analyt. Chem. 51: 844–851.CrossRefGoogle Scholar
  32. Tessier, A., Campbell, P. G. C. & Bisson, M., 1980. Trace metal speciation in the Yamaska and St. Francois Rivers (Quebec). Can. J. Earth Sci. 17: 90–105.CrossRefGoogle Scholar
  33. Troup, B. N., Bricker, O. P. & Bray, J. T., 1974. Oxidation effect on the analysis of iron in the interstitial water of recent anoxic sediments. Nature 249: 237–239.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1982

Authors and Affiliations

  • G. Nembrini
    • 1
  • J. A. Capobianco
    • 2
  • J. Garcia
    • 1
  • J.-M. Jacquet
    • 3
  1. 1.Department of Analytical ChemistryUniversity of GenevaGeneva 4Switzerland
  2. 2.Beak Consultants LimitedMississaugaCanada
  3. 3.Institut F. A. F or elUniversity of GenevaGeneva 4Switzerland

Personalised recommendations