Advertisement

Numerical Cosmologies

  • Joan Centrella
Conference paper
Part of the Nato Advanced Study Institutes Series book series (ASIC, volume 97)

Abstract

These lectures are designed for astrophysicists and cosmologists who are interested in probing the physics of the early Universe. The lectures present the formalism and techniques of numerical relativity, using the familiar Friedmann-Robertson-Walker models as examples, and show how to use these methods to construct inhomogeneous cosmological models on a computer.

Keywords

Cosmological Model Early Universe Extrinsic Curvature Gravitational Radiation Shift Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrow, J.D. and Matzner, R.A. 1977, MNRAS, 181, 719.ADSGoogle Scholar
  2. Centrella, J. 1977. Inhomogeneous Cosmologies in the ADM Formalism, in Abstracts of Contributed Papers, GR8, Waterloo, Ontario.Google Scholar
  3. Centrella, J. 1978. Talk at Battelle Seattle Workshop on Sources of Gravitational Radiation (1978) and at the Festschrift in Honor of Abraham Taub (1978).Google Scholar
  4. Centrella, J. 1979. Ph.D. Thesis, Cambridge University.Google Scholar
  5. Centrella, J. 1980a. Phys.Rev.D., 21, 2776.MathSciNetADSCrossRefGoogle Scholar
  6. Centrella, J. 1980b. Ap.J., 241, 875.ADSCrossRefGoogle Scholar
  7. Centrella, J. and Matzner, R.A. 1979. Ap.J., 230, 311.MathSciNetADSCrossRefGoogle Scholar
  8. Centrella, J. and Matzner, R.A. 1982. Phys.Rev.D., 25, 930.ADSCrossRefGoogle Scholar
  9. Centrella, J. and Smarr, L. 1978. Unpublished work, Institute of Astronomy, Cambridge.Google Scholar
  10. Centrella, J. and Wilson, J.R. 1982a. Preprint.Google Scholar
  11. Centrella, J. and Wilson, J.R. 1982b. In preparation.Google Scholar
  12. Corkill, R. 1980. Smith Prize Essay.Google Scholar
  13. Corkhill, R. and Stewart, J.M. 1981. In preparation.Google Scholar
  14. d’Inverno, R.A. and Stachel, J. 1978. J.Math.Phys., 19, 2447.MathSciNetADSCrossRefGoogle Scholar
  15. Dykema, P. 1980. Ph.D. Thesis. University of Texas at Austin.Google Scholar
  16. Eardley, D.M. 1979. Global Problems in Numerical Relativity. In Sources of Gravitational Radiation, ed. L. Smarr. Cambridge University Press.Google Scholar
  17. Eardley, D.M. and Smarr, L. 1979. Phys.Rev.D., 19, 2239.MathSciNetADSCrossRefGoogle Scholar
  18. Ellis, G.F.R. 1971. Relativistic Cosmology in General Relativity and Cosmology, Proceedings of the International School of Physics ‘Enrico Fermi’, Course XLVII, ed. R.K. Sachs. Academic Press, New York.Google Scholar
  19. Eppley, K. 1977. Phys.Rev.D., 16, 1609.MathSciNetADSCrossRefGoogle Scholar
  20. Eppley, K. 1979. Pure Gravitational Waves, in Sources of Gravitational Radiation, ed. L. Smarr. Cambridge University Press.Google Scholar
  21. Jones, B.J.T. 1976. Rev.Mod.Phys., 48, 107.ADSCrossRefGoogle Scholar
  22. Misner, C.W. 1968. Ap.J., 151, 431.ADSCrossRefGoogle Scholar
  23. Misner, C.W., Thorne, K.S. and Wheeler, J.A. 1973. Gravitation. W.H. Freeman and Company, San Francisco.Google Scholar
  24. Nadejin, D.K., Novikov, I.D. and Polnarev, A.G. 1978. Sov.Astr. 22(2), 129.ADSGoogle Scholar
  25. North, J.D. 1965. The Measure of the Universe. Clarendon Press, Oxford.Google Scholar
  26. Novikov, I.D. and Polnarev, A.G. 1979. The Hydrodynamics of Primordial Black Hole Formation and the Dependence of the Process on the Equation of State. In Sources, ed. L. Smarr.Google Scholar
  27. O’Murchadha, N. and York, J.W., Jr. 1974. Phys.Rev.D., 10, 428.MathSciNetADSCrossRefGoogle Scholar
  28. Peebles, P.J.E. 1971. Physical Cosmology. Princeton University Press.Google Scholar
  29. Piran, T. 1979. Gravitational Waves and Gravitational Collapse in Cylindrical Systems in Sources of Gravitational Radiation. ed. L. Smarr. Cambridge University Press.Google Scholar
  30. Piran, T. 1980. J.Comp.Phys., 35, 254.MathSciNetADSMATHCrossRefGoogle Scholar
  31. Rindler, W. 1956. MNRAS, 116, 663.ADSGoogle Scholar
  32. Roache, P.J. 1976. Computational Fluid Dynamics. Hermosa Publishers, Albuquerque.Google Scholar
  33. Ryan, M.P., Jr. and Shepley, L.C. 1975. Homogeneous Relativistic Cosmologies. Princeton University Press.Google Scholar
  34. Smarr, L. 1979a. (Editor), Sources of Gravitational Radiation. Cambridge University Press.MATHGoogle Scholar
  35. Smarr, L. 1979b. Gauge Conditions. Radiation Formulae and the Two Black Hole Collision, in Sources of Gravitational Radiation, ed. L. Smarr. Cambridge University Press.Google Scholar
  36. Smarr, L. 1979c. Basic Concepts in Finite Differencing of Partial Differential Equations, in Sources of Gravitational Radiation, ed. L. Smarr. Cambridge University Press.Google Scholar
  37. Smarr, L., Taubes, C. and Wilson, J.R. 1980. General Relativistic Hydrodynamics: The Comoving, Eulerian and Velocity Potential Formalisms. In Essays in General Relativity: A Festschrift for Abraham Taub, ed. F. Tipler Academic Press, New York.Google Scholar
  38. Smarr, L. and York, J.W., Jr. 1978a. Phys.Rev.D., 17, 1945.MathSciNetADSCrossRefGoogle Scholar
  39. Smarr, L. and York, J.W., Jr. 1978b. Phys.Rev.D., 17, 2529.MathSciNetADSCrossRefGoogle Scholar
  40. Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley and Sons, Inc., New York.Google Scholar
  41. Weinberg, S. 1979. Phys.Rev.Lett., 42, 850.ADSCrossRefGoogle Scholar
  42. Wilson, J.R. 1979. A Numerical Method for Relativistic Hydrodynamics, in Sources of Gravitational Radiation. ed. L. Smarr. Cambridge University Press.Google Scholar
  43. York, J.W., Jr. 1972. Phys.Rev.Lett., 28, 1082.ADSCrossRefGoogle Scholar
  44. York, J.W., `. 1979. Kinematics and Dynamics of General Relativity, in Sources of Gravitational Radiation, ed. L. Smarr. Cambridge University Press.Google Scholar
  45. York, J.W., Jr., Cantor, M. and Tipler, F. 1981. In preparation.Google Scholar
  46. York, J.W., Jr., and Piran, T. 1981. The Initial Value Problem and Beyond. In Spacetime Geometry: The Alfred Schild Lectures, eds. L.C. Shepley and R.A. Matzner. University of Texas Press, in press.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • Joan Centrella
    • 1
  1. 1.Center for RelativityUniversity of TexasUSA

Personalised recommendations