Advertisement

The Tropospheric Cycle of NOX

  • D. H. Ehhalt
  • J. W. Drummond
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 96)

Abstract

The tropospheric chemistry, budget, and distribution of NOX are reviewed. For surface air, the chemistry of NOX can conveniently be separated into daytime and nighttime processes. During the day, NOX is removed mainly via NO2 + OH + M → HNO3 + M. During the night, some of the NO2 is converted first to NO3 then to N2O5, which can be removed by moist surfaces thereby forming dissolved NO3. Estimates indicate that this reaction mechanism taking place within nighttime fogs of clouds could remove NOX as efficiently as the daytime reaction with OH. The final sink for removal of NO from the atmosphere is predominately by NO3 deposition, mostly by rainout. A smaller fraction appears as dry deposition. The total NO3 deposition in 1964 is estimated to have been (24 ± 916) x 1O12 g N yr -1. The geographical pattern for the measured total deposition is also shown. The sources of NOX, both natural and man made, totaled (40 ± 20) x 1O12 g N yr -1. Its geographical distribution is also estimated. Existing measurements provide a vertical profile of NOX for continental midlatitudes; it appears to be dominated by anthropogenic sources.

Keywords

Biomass Burning Surface Source Total Deposition Exhalation Rate American Petroleum Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Logan, J.A., M.J. Prather, S.C. Wofsy, and M.B. McElroy, 1981, Tropospheric chemistry: a global perspective, J. Geophys. Res., 86, pp. 7210–7254CrossRefGoogle Scholar
  2. (2).
    Chameides, W.L. and A. Tan, 1981, The two-dimensional diagnostic model for tropospheric OH: an uncertainty analysis, J. Geophys. Res., pp. 5209–5223Google Scholar
  3. (3).
    Chameides, W.L., and J.C.G. Walker, 1973, A photochemical theory of tropospheric ozone? J. Geophys. Res. 78, 8571 –8760CrossRefGoogle Scholar
  4. (4).
    Crutzen, P.J., 1979, The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Ann. Rev. Earth Planet. Sci., 7, pp. 43–72.CrossRefGoogle Scholar
  5. (5).
    Fishman, J., S. Solomon, and P.J. Crutzen, 1979, Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone, Tellus, 31, pp. 432–446CrossRefGoogle Scholar
  6. (6).
    Perner, D., and U. Piatt, 1979, Detection of nitrous acid in the atmosphere by differential optical absorption, Geo. Res. Lett., 6, pp. 917–920CrossRefGoogle Scholar
  7. (7).
    Piatt, U., D. Perner, G.W. Harris, A.M. Winer, and J.N. Pitts, 1980, Observations of nitrous acid in an urban atmosphere by differential optical absorption, Nature, 285, pp. 312–314CrossRefGoogle Scholar
  8. (8).
    Spicer, C.W., 1977, The fate of nitrogen oxides in the atmosphere, Pitts, J.N.; Metcalf, R.L.; Lloyd, A.C.; Advances in Environmental Science and Technology, 7, pp. 163–262, John Wiley & SonsGoogle Scholar
  9. (9).
    Piatt, U., D. Perner, A.M. Winer, G.W. Harris, and J.N. Pitts, 1980, Detection of NO3 in the polluted troposphere by differential optical absorption, Geophys. Res. Lett., 7, pp 89–92CrossRefGoogle Scholar
  10. (10).
    Piatt U., D. Perner, J. Schroder, C. Kessler, and A. Toennissen, 1981, The diurnal variation of NO3, J. Geophys. Res., submitted 1981Google Scholar
  11. (11).
    Noxon, J.F., R. Norton, and E. Marovich, 1980, NO3 in the troposphere, Geophys. Res. Lett., 7, pp. 125–128CrossRefGoogle Scholar
  12. (12).
    World Meterological Organization, NASA, FAA, NOAA, 1981, The stratosphere 1981, theory and measurements, appendix I, December 1981Google Scholar
  13. (13).
    Graham, R.A., A.M. Winer, J.N. Pitts, 1978, Pressure and temperature dependence of the unimolecular decomposition of HO2NO2, J. Chem. Phys., 68, pp. 4505–4510CrossRefGoogle Scholar
  14. (14).
    Cox, R.A., and Roffey, 1977, Environ. Sci. Tech., 11, pp. 900CrossRefGoogle Scholar
  15. (15).
    Wipprecht, V., 1981, Diplomarbeit, Institut fur Physikalische Chemie Universitat Bonn, June, 1981Google Scholar
  16. (16).
    Connell, P., and H.S. Johnston, 1979, The thermal dissociation of N2O5 in N2, Geophys. Res. Lett., 6, pp. 553–556CrossRefGoogle Scholar
  17. (17).
    Hampson, R.F., 1980, Chemical kinetic and photochemical data sheets for atmospheric reactions, U.S. Dept. of Trans. Report No. FAA-EE-80–17Google Scholar
  18. (18).
    Eriksson, E., 1952, Composition of atmospheric precipitation, 1, Nitrogen compounds, Tellus, 4, pp. 215–263CrossRefGoogle Scholar
  19. (19).
    Eriksson, E., 1959, Atmosfarens Kemi, Svensk Kemisk Tidskrift, 71,pp, 15–32Google Scholar
  20. (20).
    Böttger, A., D.H. Ehhalt, and G. Gravenhorst, 1978, Atmosphärische Kreisläufe von Stickoxiden und Ammonika, Kernfor- schungsanlage Jülich, Ber. Jül-1558Google Scholar
  21. (21).
    Höfken, K.D., 1981, Untersuchung über die Deposition atmosphärischer Spurenstoffe an Buchen und Fichtenwald, Diplmarbeit, Institut fur Meteorologie und Geophysik der Johann- Wolfgang-Goethe-Universitat, Frankfurt, AugustGoogle Scholar
  22. (22).
    Robinson, E., and R.C. Robbins, 1968, Source, abundances, and the fate of atmospheric pollutants, Final report, Stanford Research Institute, Project PR-6755 for American Petroleum Institute, New YorkGoogle Scholar
  23. (23).
    Robinson, E., and R.C. Robbins, 1970, Gaseous nitrogen compound pollutants from urban and natural sources, J. Air Pollut. Control Ass. 20, pp. 303–306Google Scholar
  24. (24).
    Robinson, E., and R.C. Robbins, 1971, Sources, abundances, and fate of gaseous atmospheric pollutants supplement, Supplement Report prepared for American Petroleum Institute, Stanford Re-search Institute, SRI-Project PR-6755, API-Publ. No. 4015Google Scholar
  25. (25).
    McConnell, J.C., 1973, Atmosphric Ammonia, Journal of Geophysical Research, 78, No. 33, pp. 7812–7821CrossRefGoogle Scholar
  26. (26).
    Angstrom, A., and L. Högberg, 1952, On the content of nitrogen in atmospheric precipitation in Sweden, 2, Tellus, pp. 271–279Google Scholar
  27. (27).
    Junge, C.E., 1963, Air Chemistry and Radioactivity, Academic Press, New York, London, 382 p.Google Scholar
  28. (28).
    Jones, M.J., Ammonium and nitrate nitogen in the rainwater at Samaru, Nigeria, Tellus, 23, pp. 459–461, 1971CrossRefGoogle Scholar
  29. (29).
    Junge C.E., 1958, The distribution of ammonia and nitrates in rainwater over the United States, Transactions American Geophysical Union, 39, No. 2, pp. 241–248Google Scholar
  30. (30).
    Petrenchuk, O.P., and E.S. Seleznewa, 1970, Chemical compo¬sition of precipitation in regions of the Soviet Union, J. Geophys. Res., 75, pp. 3629–3634CrossRefGoogle Scholar
  31. (31).
    Warneck, P. 1974, On the role of OH and HO2 radicals in the troposphere, Tellus 26, pp. 39–46CrossRefGoogle Scholar
  32. (32).
    Burns, R.S., and R.W.F. Hardy, 1975, Nitrogen fixation in bacteria and higher plants, Springer-Verlag, Berlin-Heidelberg-New York, 189 p.Google Scholar
  33. (33).
    Allison, F.E., 1965, Soil Nitrogen, W. V. Bartholomew and F.E. Clark, eds., Madison, Wise., Am. Soc. Agron., pp. 573–606Google Scholar
  34. (34).
    Henzell, E.F., and D.O. Norris, Commonwealth Bur. Pastures Field Crops, Bull. 46, Hurley, Berkshire, U.K. 1962Google Scholar
  35. (35).
    Köhler, K. H., Biol. Rundschau 6, pp. 167–187, 1968Google Scholar
  36. (36).
    Martin, D.F., Marine Chemistry, 2, New York: Dekker 1970Google Scholar
  37. (37).
    Horne, R.A., Marine Chemistry, New York: Wiley 1969Google Scholar
  38. (38).
    Chameides, W.L., 1978, The photochemical role of tropospheric nitrogen oxides, Geophys. Res. Lett., 5 (1), pp. 17–20CrossRefGoogle Scholar
  39. (39).
    Söderlund, R., and B.H. Svensson, 1976, The global nitrogen cycle, in Svensson, B.H., Söderlund, R. (eds.) N,P,S-Global Cycles, Scope Report 7, Ecol. Bull. (Stockholm) 22: pp- 23–73Google Scholar
  40. (40).
    Steinhardt, U., 1973, Input of chemical elements from the atmosphere. A tabular review of literature. Göttinger Bodenkundl. Ber. 29: pp. 93–132Google Scholar
  41. (41).
    Söderlund, R., 1976, Wet deposition of Inorganic Nitrogen Compounds over the Sea, Rep. AC-34, Stockholm, Department of Meteorology, University of Stockholm, International Meteorological Institute in Stockholm, 16 pp.Google Scholar
  42. (42).
    EPA, 1973, Compilation of air pollutant emission factors (2nd edition), U.S. Environmental Protection Agency, Re-search Triangle Park, North Carolina, 27711, PB-223 996, Publication AP-42Google Scholar
  43. (43).
    EPA, 1977, Compilation of air pollutant emission factors (including supplements 1-7), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, AP-42Google Scholar
  44. (44).
    NASA, 1981, Chemical kinetic and photochemical data for use in stratospheric modelling, Evaluation number 4: Panel for Data Evaluation, JPL publication 81–3Google Scholar
  45. (45).
    1976, Statistical Yearbook of the United Nations 1975Google Scholar
  46. (46).
    Galbally, J.E., and C.R. Roy, 1978, Loss of fixed nitrogen from soil by nitric oxide exhalation, Nature, 275, pp. 734–735CrossRefGoogle Scholar
  47. (47).
    Marakov, B.N., 1969, Liberation of nitrogen dioxide from soil, Soviet soil science, pp. 20–25, translated from Pochvovedeniye No. 1, pp. 49–53Google Scholar
  48. (48).
    Crutzen, P.J., L.E. Heidt, J.P. Krasnec, W.H. Pollack, and W. Seiler, 1979, Biomass burning as a source of atmospheric gases CO, U2, N2O, NO, CH3C1, and COS., Nature, 282, pp. 253–256CrossRefGoogle Scholar
  49. (49).
    Levine, J.S., R.S. Rogowski, G.L. Gregory, W.E. Howell, and J. Fishman, 1981, Simultaneous measurements of NOX, NO, and O3 production in a laboratory discharge: atmospheric implications, Geophys. Res. Lett., 8, pp. 357–360CrossRefGoogle Scholar
  50. (50).
    Noxon, J.F., 1976, Atmospheric nitrogen fixation by lightning, Geophys. Res. Lett., 3, pp. 463–466CrossRefGoogle Scholar
  51. (51).
    Chameides, W.L., D.H. Stedman, R.R. Dickerson, D.W. Rusch, and R.J. Cicerone, 1977, NOx production in lightning Journal of Atmospheric Sciences 34, pp. 143–149Google Scholar
  52. (52).
    CIAP, 1974, The effects of stratospheric pollution by aircraft, A.J. Grobecker, S.C. Coroniti, and R.H. Cannon, Jr., Dept. of Transportation, D0T-TST-75–50.Google Scholar
  53. (53).
    Davidson, B., J.P. Friend, and H. Seitz, 1965, Numerical models of diffusion and rainout of stratospheric radioactive materials, Tellus, 18, pp. 301–315CrossRefGoogle Scholar
  54. (54).
    Ehhalt, D.H., and G. Haumacher, 1970, The seasonal variation in the concentration of strontium 90 in rain and its dependence on latitude, J. Geophys. Res., 75, pp. 3027–3031CrossRefGoogle Scholar
  55. (55).
    Zafiriou, O.C., M. McFarland, and R.H. Bromund, 1980, Nitric oxide in sea water, Science, 207, pp. 637–639CrossRefGoogle Scholar
  56. (56).
    Gravenhorst, C., C. Perseke, and E. Rohbock, 1980, Untersuchung über die trockene und feuchte Deposition von Luftverunreinigungen in der Bundesrepublik Deutschland, Institut für Meteorologie und Geophysik der Universität FrankfurtGoogle Scholar
  57. (57).
    Platt, U., and D. Perner, 1980, Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV, J. Geophys. Res., 85, pp. 7453–7458CrossRefGoogle Scholar
  58. (58).
    Helas, G., and P. Warneck, 1981, Background NOx mixing ratios in air masses over the North Atlantic Ocean, J. Geophys. Res., 86, pp. 7283–7290CrossRefGoogle Scholar
  59. (59).
    McFarland, M., D. Kley, J.W. Drummond, A.L. Schmeltekopf, and R.H. Winkler, 1979, Nitric oxide measurements in the equatorial Pacific region., Geophys. Res. Lett., 6, pp. 605–608CrossRefGoogle Scholar
  60. (60).
    Brewer, A.W., C.T. McElroy, and J.B. Kerr, 1974, Nitrogen dioxide in the atmosphere, Nature, 246, pp. 129–133CrossRefGoogle Scholar
  61. (61).
    Brewer, A.W., C.T. McElroy, and J.B. Kerr, 1974, Spectrophotometry nitrogen dioxide measurements, Third conference on CIAP, U.S. Dept. of Transportation, pp. 257–262Google Scholar
  62. (62).
    Kerr, J.B., and C.T. McElroy, 1976, Measurements of stratospheric nitrogen dioxide from the AES stratospheric balloon program, Atmosphere, 14, pp. 166–171Google Scholar
  63. (63).
    Kerr, J.B., W.F.J. Evans, and J.G. McConnell, 1977, The effects of NO2 changes at twilight on tangent ray NO2 measurements, Geophys. Res. Lett., 4, pp. 577–579CrossRefGoogle Scholar
  64. (64).
    Kley, D., J.W. Drummond, M. McFarland, and S.C. Liu, 1981, Tropospheric profiles of NOx. J. Geophys. Res., 6, pp. 605–608Google Scholar
  65. (65).
    Schiff, H.I., D. Pepper, and B.A. Ridley, 1979, Tropospheric NO measurements up to 7 km, J. Geophys. Res., 84, pp. 7895–7897CrossRefGoogle Scholar
  66. (66).
    Robinson, E., and R. C. Robbins, 1975, Gaseous atmospheric pollutants from urban and natural sources, in: Singer, S.F. (ed.) The Changing Global Environment, D. Reidel Publishing Company, Dordrecht-Holland, pp. 111–123.Google Scholar

Copyright information

© D. Reidel Publishing Company 1982

Authors and Affiliations

  • D. H. Ehhalt
    • 1
  • J. W. Drummond
    • 1
  1. 1.Institut für Chemie IIIAtmosphärische ChemieJülichFed. Rep. of Germany

Personalised recommendations