Skip to main content

Application of Classical Theory of CARS to Diatomic Molecules in the Gas Phase

  • Conference paper
Non-Linear Raman Spectroscopy and Its Chemical Aplications

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 93))

Abstract

Linear Raman scattering can be described classically when excitation frequencies are used which are far from resonance with electronic absorption frequencies. If this is not the case, the scattering amplitude must be derived by quantum-mechanical calculation of the linear polarizability [1]. Similarly, CARS intensities can be obtained classically by combining the classical theory of the linear Raman effect with a simple damped, field- driven, harmonic oscillator model [2,3], whereas for the case of electronic resonances one has to use again quantum-mechanics for the determination of the CARS amplitude. The latter is given through the third-order non-linear CARS susceptibility [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. see for example the article by Beckmann, A., Baierl, P., and Kiefer, W. in this book, page 393.

    Google Scholar 

  2. DeWitt, R.N., Harvey, A.B., and Tolles, W.M., NRL Memorandum Report 3260, 1976.

    Google Scholar 

  3. Tolles, W.M., Nibler, J.W., McDonald, J.R., and Harvey, A.B., Applied Spectrosc. 31, 253 (1977).

    Article  CAS  Google Scholar 

  4. Druet, S.A.J., Attal, B., Gustafson, T.K., and Taran, J.P.E., Phys. Rev. A18, 1529 (1978).

    Article  CAS  Google Scholar 

  5. Placzek, G. in Handbuch der Radiologie, Marx, G., ed., Vol. 6, Pt. 2, Akademische Verlagsgesellschaft, Leipzig, 1934, p. 205.

    Google Scholar 

  6. For aj and Yj 2 Schrotter, H.W. and Klöckner, H.W., in Raman Spectroscopy of Gases and Liquids, Weber, A., ed., Topics in Current Physics, Vol. 11, Springer, Berlin, 1979, p. 123.

    Google Scholar 

  7. Fenner, W.R., Hyatt, H.A., Kellam, J.M., and Porto, S.P.S., J. Opt. Soc. Am. 63, 73 (1973).

    Article  CAS  Google Scholar 

  8. Long, A.D., Raman Spectroscopy, McGraw Hill, New York, 1977, p. CRS 13.

    Google Scholar 

  9. Moya, F., Druet, S.A.J., and Taran, J.P.E., Opt. Commun., 13, 169 (1975).

    Article  CAS  Google Scholar 

  10. Nitsch, W., and Kiefer, W., Opt. Commun. 23, 240 (1977).

    Article  CAS  Google Scholar 

  11. Nitsch, W., and Kiefer, W., J. Mol. Struct. 45, 343 (1978).

    Article  CAS  Google Scholar 

  12. Laane, J., and Kiefer, W., J. Raman Spectrosc. 9, 353 (1980).

    Article  CAS  Google Scholar 

  13. Fletcher, U.H., and Rayside, J.S., J. Raman Spectrosc. 2, 3 (1974).

    Article  CAS  Google Scholar 

  14. Bendtsen, J., J. Raman Spectrosc. 70, 560 (1974).

    Google Scholar 

  15. Beckmann, A., Fietz, H., Kiefer, W., and Laane, J., Phys. Rev. A24, 2518 (1981).

    Article  CAS  Google Scholar 

  16. Valentin, A., Boissy, J.P., Cardinet, Ph., Henry, A., Chen, D.W., and Rao, K.N., C.R. Acad. Sci. B 283, 233 (1976).

    CAS  Google Scholar 

  17. Valentin, A., Henry, A., Cardinet, Ph., LeMoal, M.F., Chen, D.W., and Rao, K.N., J. Mol. Spectrosc. 70 9 (1978).

    Google Scholar 

  18. Saenger, K.L., Zare, R.N., and Mathews, C.W., J. Mol. Spectrosc. 61, 216 (1976).

    Article  CAS  Google Scholar 

  19. Owyoung, A., Opt. Lett. 2, 91 (1978).

    Article  CAS  Google Scholar 

  20. Hall, R.J., Verdieck, J.F., and Eckbreth, A.C., Opt. Commun. 35 69 (1980).

    Google Scholar 

  21. Rahn, L.A., Farrow, R.L., Koszykowski, M.L., and Mattern, P.L., Phys. Rev. Lett. 45, 620 (1980).

    Article  Google Scholar 

  22. Esherik, P., and Owyoung, A., this book, page 499.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

Kiefer, W. (1982). Application of Classical Theory of CARS to Diatomic Molecules in the Gas Phase. In: Kiefer, W., Long, D.A. (eds) Non-Linear Raman Spectroscopy and Its Chemical Aplications. NATO Advanced Study Institutes Series, vol 93. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7912-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7912-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7914-7

  • Online ISBN: 978-94-009-7912-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics