Skip to main content

Fundamentals of Boundary Elements

  • Conference paper

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 92))

Abstract

The numerical techniques of analysis used in engineering are based on the approximate solution of a set of equations describing a physical problem. The most widely known approximate method is Finite Differences which approximates the governing equations of the problem using local expressions for the variables, generally based on truncated Taylor series. The technique can be interpreted as a special case of the more general weighted residual method (Brebbia [l]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brebbia, C. A., The Boundary Element Method for Engineers, Pentech Press, London (1978).

    Google Scholar 

  2. Brebbia, C. A. and Connor, J. J., Fundamentals of Finite Element Techniques for Structural Engineers, Butterworths, London (19 73).

    Google Scholar 

  3. Connor, J. J. and Brebbia, C. A., Finite Element Method for Fluid Flow, Butterworths, London (1977).

    Google Scholar 

  4. Kantorovich, L. V. and Krylov, V. I., Approximate Methods of Higher Analysis, Interscience, New York (1958).

    Google Scholar 

  5. Courant, R. and Hilbert, D., Methods of Mathematical Physics, Interscience (1953).

    Google Scholar 

  6. Reissner, E., A Note on Variational Principles in Elasticity1, Into. J. Solids and Structures, 1, pp. 93–95 and 357 (1965).

    Google Scholar 

  7. Pian, T. H. H. and Tong, P., ‘Basis of Finite Element Method for Solid Continua’, Int. J. Numerical Methods Engng., 1, pp. 3–28 (1969).

    Article  Google Scholar 

  8. Washizu, K., Variational Methods in Elasticity and Plasticity, 2nd edn, Pergamon Press, New York (1975).

    Google Scholar 

  9. Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff Ltd., Groningen (1953).

    Google Scholar 

  10. Mikhlin, S. G., Integral Equations, Pergamon Press, New York (1957).

    Google Scholar 

  11. Kupradze, 0. D., Potential Methods in the Theory of Elasticity, Daniel Davey & Co., New York (1965).

    Google Scholar 

  12. Smirnov, V. J., ‘Integral Equations and Partial Differential Equations’, in A Course in Higher Mathematics, Vol. IV, Addison-Wesley (1964).

    Google Scholar 

  13. Kellogg, P. D., Foundations of Potential Theory, Dover, New York (1953).

    Google Scholar 

  14. Jaswon, M. A. ‘Integral Equation Methods in Potential Theory, I’ Proc. R. Soc., Ser. A, p. 273 (1963)

    Google Scholar 

  15. Symm, G. T., ‘Integral Equation Methods in Potential Theory II’ Proc. R. Soc., Ser. A, p. 275 (1963).

    Google Scholar 

  16. Massonnet, C. E., ‘Numerical Use of Integral Procedures in Stress Analysis’, Stress Analysis, Zienkiewicz, 0. C. and Holister, G. S. (eds) Wiley (1966).

    Google Scholar 

  17. Hess, J. L. and Smith, A. M. 0., ‘Calculation of Potential Flow about Arbitrary Bodies’,. Progress in Aeronautical Sciences Vol. 8, Kuchemann, D. (Ed). Pergamon Press (1967).

    Google Scholar 

  18. Cruse, T. A. and Rizzo, F. J., ‘A Direct Formulation and Numerical Solution of the General Transient Elasto-Dynamic Problem I’, J. Math. Analysis Applic., 22 (1968).

    Google Scholar 

  19. Hadid, H. A., An Analytical and Experimental Investigation into the Bending Theory of ELastic Conoidal Shells, Ph.D. Thesis, University of Southampton (1964).

    Google Scholar 

  20. Hajdin, N., ‘A Method for Numerical Solutions of Boundary Value Problems and its Application to Certain Problems in the Theory of Elasticity’, Belgrade University Publication (1958).

    Google Scholar 

  21. Tomlin, G. R., ‘Numerical Analysis of Continuum Problems in Zoned Anisotropic Media’, Ph.D. Thesis, University of Southampton (1972).

    Google Scholar 

  22. Watson, J., Analysis of Thick Shells with Holes by Using Integral Equation Method, Ph.D. Thesis, University of Southampton (1973).

    Google Scholar 

  23. Lachat, J. C., A Further Development of the Boundary Integral Technique for Elastostatics, Ph.D. Thesis, University of Southampton (1975).

    Google Scholar 

  24. Brebbia, C. A. and Walker, S., The Boundary Element Technique in Engineering, Newnes-Butterworths, London (1979).

    Google Scholar 

  25. Brebbia, C. A. (Ed.). Recent Advances in Boundary Element Methods, Proc. 1st Int. Conference Boundary Element Methods, Southampton University, 1978, Pentech Press, London (1978).

    Google Scholar 

  26. Brebbia, C. A. (Ed.). New Developments in Boundary Element Methods, Proc. 2nd Int. Conference Boundary Element Methods, Southampton University, 1980, C.M.L. Publications, Butterworths, London, (1980).

    Google Scholar 

  27. Brebbia, C. A. (Ed.). Boundary Element Methods. Proc. 3rd Int. Conference Boundary Element Methods, Irvine, California, 1981. C.M.L. Publications - Springer-Verlag, Berlin, (1981).

    Google Scholar 

  28. Rizzo, F. J. and Shippy, D. J. ‘A Method of Solution for Certain Problems of Transient Heat Conduction’, AIAA J., 8, No. 11, pp. 2004 – 2009 (1970).

    Google Scholar 

  29. Liggett, J. A. and Liu, P. L., ‘Unsteady Flow in Confined Aquifers: A Comparison of Two Boundary Integral Methods1, Water Resources Res., 15, No. 4, pp. 861–866 (1979)

    Google Scholar 

  30. Chang, Y. P., Kang, C. S. and Chen D. J., ‘The Use of Fundamental Green’s Function for the Solution of Problems of Heat Conduction in Anisotropic Media1, Int. J. Heat Mass Transfer, 16 pp. 1905–1918 (1973).

    Google Scholar 

  31. Wrobel, L. C. and Brebbia, C. A., ‘The Boundary Element Method for Steady-State and Transient Heat Conduction’ 1st Int. Conf. Numerical Methods in Thermal Problems, Swansea, Taylor, C. and Morgan, K. ( Eds. ), Pineridge Press, (1979).

    Google Scholar 

  32. Wrobel, L. C. and Brebbia, C. A., ‘A Formulation of the Boundary Element Method for Axisymmetric Transient Heat Conduction’, Int. J. Heat Mass Transfer.

    Google Scholar 

  33. Wrobel, L. C. and Brebbia, C. A., ‘Boundary Elements in Thermal Problems’, Numerical Methods in Heat Transfer, Lewis, R. W. (Ed.), Wiley, Chichester, England (1981).

    Google Scholar 

  34. Cruse, T. A. and Rizzo, F. J., ‘A Direct Formulation and Numerical Solution of the General Elastodynamic Problem, I’, J. Math. Analysis Applic., 22 (1968).

    Google Scholar 

  35. Cruse, T. A. and Rizzo, F. J., ‘A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem, II’, J. Math.Analysis Applic., 22 (1968).

    Google Scholar 

  36. Alarcon, E. et al. ‘Elastodynamics’. Chapter in the Book ‘Progress in Boundary Element Methods’ (Ed. C. A. Brebbia).Pentech Press, London, Halstead Press, N.Y., 1981.

    Google Scholar 

  37. Cruse, T. A. and Vanduren, W., ‘Three-Dimensional Elastic Stress Analysis of a Fracture Specimen with Edge Crack’, Int. J. Fract. Mech., 7, pp. 1–15 (1971).

    Google Scholar 

  38. Swedlow, J. L. and Cruse, T. A., ‘Formulation of Boundary Integral Equations for Three-Dimensional Elas to-Plastic Flow’, Int. J. Solids Struct., 7, pp. 1673–1683, (1971).

    Article  Google Scholar 

  39. Mendelson, A., ‘Boundary Integral Methods in Elasticity and Plasticity’, Report No. NASA TN D-7418 (1973).

    Google Scholar 

  40. Mukherjee, S., ‘Corrected Boundary Integral Equation in Planar Thermoelasticity’, Int. J. Solids Struct., 13, pp. 331–335 (1977).

    Google Scholar 

  41. Bui, H. D., ‘Some Remarks about the Formulation of Three-Dimensional Thermoelastoplastic Problems by Integral Equations’, Int. J. Solids Struct., No. 14, pp. 935–939 (1978)

    Article  Google Scholar 

  42. Telles, J. C. F. and Brebbia, C. A., ‘On the Application of the Boundary Element Method to Plasticity’, A.pl. Math. Modelling, 3, pp. 446–470 (1979).

    Google Scholar 

  43. Telles J. C. F. and Brebbia, C. A., ‘The Boundary Element Method in Plasticity’, in New Developments in Boundary Element Methods, Brebbia, C., A. (Ed.), C.M.L. Publications, England (1980).

    Google Scholar 

  44. Brebbia, C. A. and Georgiu, P., ‘Combination of Boundary and Finite Elements in Elastostatics’, Applied Math. Modelling, 3, pp. 213–220 (1978).

    Google Scholar 

  45. Georgiu, P. and Brebbia, C. A., ‘On the Combination of Boundary and Finite Element Solution’. Applied Math. Modelling. To be published.

    Google Scholar 

  46. Chaudonneret, M., ‘On the Discontinuity of the Stress Vector in the Boundary Integral Equation Method for Elastic Analysis’, ‘Recent Advances in Boundary Element Methods’, Brebbia, C. A. (Ed.), Pentech Press, London (1978).

    Google Scholar 

  47. Zienkiewicz, 0. C., Kelly, D. W. and Bettess, P., ‘The Coupling of the Finite Element Method and Boundary Solution Procedures’, Int. J. Num. Meth. Engng., 11, 355–375.

    Google Scholar 

  48. Mustoe, G., ‘A Symmetric Direct Boundary Integral Equation Method for Two-Dimensional Elastostatics’, Paper presented at the 2nd Int. Symposium on Boundary Element Methods, Southampton University, March (1980).

    Google Scholar 

  49. Lau, P. and Brebbia, C. A., ‘The Cell Collocation Method in Continuum Mechanics’, Int. J. Mech. Sci., 20, pp. 83–85 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

Brebbia, C.A. (1982). Fundamentals of Boundary Elements. In: Martins, J.B. (eds) Numerical Methods in Geomechanics. NATO Advanced Study Institutes Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7895-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7895-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7897-3

  • Online ISBN: 978-94-009-7895-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics