The Boundary between Explosion and Collapse in Very Massive Objects

  • J. R. Bond
  • W. D. Arnett
  • B. J. Carr
Conference paper
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 90)


A simple model emphasizing an entropic view of VMO evolution in the oxygen core phase is developed. Calculations of the effects of the pair instability, oxygen and silicon burning, and alpha quenching on a global effective potential allow us to predict the critical oxygen core mass for black hole formation, MOc, and the abundance ratio of oxygen burning products to oxygen in those VMOs that explode. We find MOc ~ 102MƟ, corresponding to an initial star mass > 220 MƟ.


Black Hole Massive Object Convective Burning Helium Burning Helium Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appenzeller, I. 1970. Astr.Astrophys., 9, 216.ADSGoogle Scholar
  2. Arnett, W.D. 1972. Ap.J., 169, 681.ADSCrossRefGoogle Scholar
  3. Arnett, W.D. 1973. In Explosive Nucleosynthesis, ed. W.D. Arnett and D.N. Schramm. (Austin: University of Texas Press)Google Scholar
  4. Arnett, W.D., Bond, J.R. and Carr, B.J. 1981a. Preprint.Google Scholar
  5. Arnett, W.D., Bond, J.R. and Carr, B.J. 1981b. Preprint.Google Scholar
  6. Barkat, Z., Rakavy, G. and Sack, N. 1967. Phys.Rev.Lett., 18, 379.ADSCrossRefGoogle Scholar
  7. Bond, J.R. 1981. In preparation.Google Scholar
  8. Carr, B.J., Arnett, W.D. and Bond, J.R. 1982. This volume.Google Scholar
  9. Fowler, W.A. and Hoyle, F. 1964. Ap.J.Suppl., 9, 201.ADSCrossRefGoogle Scholar
  10. Fraley, G.S. 1968. Ap.Space Sci., 2, 96.ADSCrossRefGoogle Scholar
  11. Fricke, K.J. 1973. Ap.J., 183, 941.ADSCrossRefGoogle Scholar
  12. Ober, W.W., El Eid, M.F. and Fricke, K.J. 1982. This volume.Google Scholar
  13. Papaloizou, J.C.B. 1973. Mon.Not.R.astr.Soc., 162, 169.ADSGoogle Scholar
  14. Rakavy, G. and Shaviv, G. 1968. Ap.Space Sci., 1, 429.ADSCrossRefGoogle Scholar
  15. Silk, J. 1977. Ap.J., 211, 638.ADSCrossRefGoogle Scholar
  16. Stothers, R. and Simon, N.R. 1970. Ap.J., 160, 1019.ADSCrossRefGoogle Scholar
  17. Talbot, R.J. 1971. Ap.J., 165, 121.ADSCrossRefGoogle Scholar
  18. Talbot, R.J. and Arnett, W.D. 1971. Nature 229, 150.ADSGoogle Scholar
  19. Tohline, J.E. 1980. Ap.J., 239, 417.ADSCrossRefGoogle Scholar
  20. Weaver, T.A., Zimmerman, G.B. and Woosley, S.E. 1978. Ap.J., 225, 1021.ADSCrossRefGoogle Scholar
  21. Wheeler, J.C. 1977. Ap.Space Sci., 50, 125.ADSCrossRefGoogle Scholar
  22. Woosley, S.E. and Weaver, T.A. 1982. This volume.Google Scholar
  23. Zeldovich, Ya.B. and Novikov, I.D. 1971. Relativistic Astrophysics, (Chicago: University of Chicago Press).Google Scholar
  24. Ziebarth, K. 1970. Ap.J., 162, 947.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1982

Authors and Affiliations

  • J. R. Bond
    • 1
  • W. D. Arnett
    • 2
    • 4
  • B. J. Carr
    • 3
  1. 1.Department of AstronomyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of PhysicsStanford UniversityUSA
  3. 3.Astronomy and Astrophysics CenterUniversity of ChicagoUSA
  4. 4.Institute of AstronomyCambridge UniversityUSA

Personalised recommendations