Observational Aspects of the Microwave Cosmic Background Spectrum

  • D. H. Martin
Part of the Astrophysics and Space Science Library book series (ASSL, volume 99)


The discovery of the isotropic microwave background, in 1964, was followed by a decade of careful measurements of the background flux throughout the centimetric and millimetric ranges of wavelength. The results of these measurements are not inconsistent with a Planckian spectrum but the absolute precision of the measurements is not as high as is frequently assumed. More recently attention has turned to searches for variations in the flux density with direction in the sky, while preparations are made in laboratories around the world for a second wave of measurements of the spectrum which are to have a much higher absolute precision. I point out in this article the limitations in our present knowledge of the microwave background, identify the observational difficulties in improving that knowledge and report on some of the plans for future measurements. The excellent recent critical review of background measurements by R.J. Weiss (1980) and the papers presented at a 1979 Copenhagen Symposium (Kalchar 1979) should be consulted for further detail.


Liquid Helium Thermal Emission Signal Beam Antenna Pattern Horn Antenna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boynton, P.E., Stokes, R.A., Wilkinson, D.T. 1968, Phys.Rev.Lett. 21, 462.ADSCrossRefGoogle Scholar
  2. Dall’oglio, G., Fonti, S., Melchiorri, B., Melchiorri, F., Natale, V., Lombardirii, P., Trivero, P., Sivertson, S. 1976, Phys.Rev.D, 13, 1187.ADSCrossRefGoogle Scholar
  3. Gush, H.P. 1981, Phys.Rev.Lett. 47, 745.ADSCrossRefGoogle Scholar
  4. Kalckar, J., Ulfbeck, O., Nilsson, N.R. 1980 (Eds.) The Universe at Large Redshifts, Physica Scripta 21, No. 5.Google Scholar
  5. Martin, D.H. 1982, Ch. 2 of Infrared and Millimetre Waves, Vol. 6, Ed. K.J. Button, Academic Press.Google Scholar
  6. Martin, D.H. and Puplett, E. 1970, Infrared Physics 10, 105.ADSCrossRefGoogle Scholar
  7. (and Martin, D.H. 1972, in “Infrared Detection Techniques for Space Research”, Eds. V. Manno and J. Ring, p.267, Reidel).Google Scholar
  8. Mather, J.C. 1981, IEEE Trans. AP29, 967.ADSGoogle Scholar
  9. Muehlner, D.J. and Weiss, R. 1973, Phys.Rev.Lett. 30, 757.ADSCrossRefGoogle Scholar
  10. Penzias, A.A. and Wilson, R.W. 1965, Astrophys.J. 142, 420.ADSGoogle Scholar
  11. Pickett, H.M., Cohen, A., and Brinza, D.E. 1981, Astrophys.J. 248, L49.ADSCrossRefGoogle Scholar
  12. Robson, E.I., Vickers, D.G., Huizinga, J.S., Beckman, J.E., Clegg, P.E. 1974, Nature 251, 591.ADSCrossRefGoogle Scholar
  13. (and P.E. Clegg 1978, in “Infrared Astronomy”, Eds. G. Setti and G.G. Fazio, Reidel).Google Scholar
  14. Rowan-Robinson, M. and Tarbet, P. 1982, This Volume.Google Scholar
  15. Silk, J., Proceedings of Conference on Astrophysics and Elementary Particles & Cosmology, 1981, Eds. J. Audouze and others.Google Scholar
  16. Weiss, R. 1980, Ann.Rev.Astron.Astrophys. 18, 489.ADSCrossRefGoogle Scholar
  17. Weiss, R., Mather, J. and Kelsall, T. 1980, Physica Scripta 21, 670.ADSCrossRefGoogle Scholar
  18. Wilkinson, D.T., Stokes, R.A. and Partridge, R.B. 1967, Phys.Rev.Lett. 19, 1199.ADSCrossRefGoogle Scholar
  19. Woody, D.P., Mather, J.C, Nishloka, N.S. and Richards, P.L. 1975, Phys.Rev.Lett. 34, 1036.ADSCrossRefGoogle Scholar
  20. Woody, D.P. and Richards, P.L. 1979, Phys.Rev.Lett. 42, 925.ADSCrossRefGoogle Scholar
  21. Woody, D.P. and Richards, P.L. 1981, Astrophys.J. 248, 18.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1982

Authors and Affiliations

  • D. H. Martin
    • 1
  1. 1.Physics DepartmentQueen Mary CollegeLondonUK

Personalised recommendations