Prospects for X-Ray Observations of Cosmological Significance

  • K. A. Pounds
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 99)


The cosmic X-ray background (at least in the energy band ~2–10 keV) shares with the microwave background the property of originating at a high redshift (Z×~ 1–5; Zm~103). Thus, studies of the structure, spectrum and origin of the X-ray background are potentially important cosmologically. Existing measurements of the background isotropy and deductions made therefrom are reviewed and seen to provide interesting limits on the matter distribution on scales larger than that of super-clusters. Source counts from the Einstein Observatory and earlier sky survey experiments show a significant (and possibly dominant) component of the X-ray background to arise from a strongly evolving population of high redshift QSO’s. However, the present X-ray data do not yield definitive cosmological data, and it is concluded that the realisation of this potential must await the deep all-sky survey of ROSAT (in~1987) and, more particularly, the 1.2 metre AXAF X-ray telescope (~1990?) with its capability to study many types of X-ray source to redshifts z≥1.


Cosmic Microwave Background High Redshift Luminosity Function Luminosity Distance Extragalactic Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boldt, E., 1981, Washington Acad. Sci., 71, pp. 24–44.Google Scholar
  2. Boynton, P.E., 1981, in X-ray Astronomy with the Einstein Satellite. Ed. Giacconi, pp. 297-310. D. Reidel Pub. Co.Google Scholar
  3. Cavallo G. and Rees, M.J., 1978, Mon. Not. R. astr. Soc. 183, pp. 359–366.ADSGoogle Scholar
  4. Fabian, A.C. and Warwick, R.S., 1979, Nature, 280, pp. 39–40.ADSCrossRefGoogle Scholar
  5. Maccacaro, T., Feigelson, E.D., Fener, M., Giacconi, R., Gioia, I.M., Griffiths, R.E., Murray, S.S. and Zamorani, G., 1981, Astrophys. J. in press.Google Scholar
  6. Marshall, N., Warwick, R.S. and Pounds, K.A., 1981, Mon. Not. R. astr. Soc. 194, pp. 987–1002.ADSGoogle Scholar
  7. McHardy, I.M., Lawrence, A., Pye, J.P. and Pounds, K.A., 1981, Mon. Not. R. astr. Soc.Google Scholar
  8. Perrenod, S.C. and Henry, J.P., 1981, Astrophys. J., 247, pp. L1-LA.Google Scholar
  9. Pounds, K.A., 1981, Washington Acad. Sci., 71, pp. 104–114.Google Scholar
  10. Protheroe, R.J., Wolfendale, A.W. and Wdowczyk, J., 1980, Mon. Not. R. astr. Soc, 192, pp. 445–454.ADSGoogle Scholar
  11. Rees, M.J., 1980, in X-ray Astronomy, Ed. Giacconi and Setti, pp. 377-384. D. Reidel Pub. Co.Google Scholar
  12. Schwartz, D.A., 1976, Astrophys. J., 206, pp. L95–L98.ADSCrossRefGoogle Scholar
  13. Schwartz, D.A., 1980, Physica Scripta, 21, pp. 644–649.ADSCrossRefGoogle Scholar
  14. Silk, J. and White, S., 1978, Astrophys. J., 226, pp. L103–L106.ADSCrossRefGoogle Scholar
  15. Smoot, G.F., Gorenstein, M.V. and Muller, R.A., 1977, Phys. Rev. Lett. 39, PP. 898–901.ADSCrossRefGoogle Scholar
  16. Trümper, J., 1981, Washington Acad. Sci. 71, pp. 114–124.Google Scholar
  17. Warwick, R.S., Pye, J.P. and Fabian, A.C., 1980, Mon. Not. R. astr. Soc. 190, pp. 243–260.ADSGoogle Scholar
  18. White, R.A., Sarazin, C.L., Quintana, H. and Jaffe, W.J., 1981, Astrophys. J., 245, pp. L1–L4.ADSCrossRefGoogle Scholar
  19. Wolfe, A.M., 1970, Astrophys. J., 159, pp.L61-L67.ADSCrossRefGoogle Scholar
  20. Zamorani, G., Henry, J.P., Maccacaro, T., Tananbaum, H., Soltan, A., Avni, Y., Liebert, J., Stocke, J., Strittmatter, P.A., Weymann, R.J., Smith, M.G. and Condon, J.J., 1981, Astrophys. J., 245, pp. 357–374.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1982

Authors and Affiliations

  • K. A. Pounds
    • 1
  1. 1.X-ray Astronomy GroupUniversity of LeicesterUK

Personalised recommendations