Labile Species and Fast Processes in Liquid Alcohol Radiolysis

  • Gordon R. Freeman
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 86)

Abstract

The radiolysis of liquid ethanol is used to illustrate the types of labile species and fast processes that occur during the radiolysis of alcohols. Reactive solutes alter product yields. Kinetic analysis of product yields as functions of solute concentration, temperature and pressure illuminate the processes. The analysis involves known physical properties of the solvent, such as dielectric constant and dielectric relaxation times, and their temperature dependences. More detailed information about electron solvation and reaction rates has been obtained by various pulse techniques.

Keywords

Entropy Migration Microwave Ethyl Torque 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.R. Freeman, in “Actions chimiques et biologiques des radiations”, M. Haissinsky (ed.), 73 (1970), Masson et Cie., Paris; references therein.Google Scholar
  2. 2.
    G.R. Freeman, Adv. Chem. Ser. 82, 339 (1968).CrossRefGoogle Scholar
  3. 3.
    K.N. Jha and G.R. Freeman, J. Chem. Phys. 48, 5480 (1968).CrossRefGoogle Scholar
  4. 4.
    W.H. Hamill, J. Phys. Chem. 73, 1341 (1969).CrossRefGoogle Scholar
  5. 5.
    J.T. Richards and J.K. Thomas, J. Chem. Phys. 53, 218 (1970).CrossRefGoogle Scholar
  6. 6.
    J.H. Baxendale and P. Wardman, J. Chem. Soc., Faraday Transactions I, 69, 584 (1973)Google Scholar
  7. J.H. Baxendale and P. Wardman, Nature, 230, 449 (1971).CrossRefGoogle Scholar
  8. 7.
    H. Hase, T. Warashina, M. Noda, A. Namiki and T. Higashimura, J. Chem. Phys. 57, 1039 (1972).CrossRefGoogle Scholar
  9. 8.
    M.J. Bronskill, R.K. Wolff and J.W. Hunt, J. Chem. Phys. 53, 4201 (1970).CrossRefGoogle Scholar
  10. 9.
    G. Beck and J.K. Thomas, J. Phys. Chem. 76, 3856 (1972).CrossRefGoogle Scholar
  11. 10.
    P.M. Rentepis, R.P. Jones and J. Jortner, J. Chem. Pys. 59, 766 (1973).CrossRefGoogle Scholar
  12. 11.
    W.J. Chase and J.W. Hunt, J. Phys. Chem. 79, 2835 (1975).CrossRefGoogle Scholar
  13. 12.
    G.A. Kenney-Wallace and C.D. Jonah, Chem. Phys. Lett. 39, 596 (1976).CrossRefGoogle Scholar
  14. 13.
    Y. Wang, M.K. Crawford, M.J. McAuliffe and K.B. Eisenthal, Chem. Phys. Lett. 74, 160 (1980).CrossRefGoogle Scholar
  15. 14.
    G.R. Freeman, “Radiation Chemistry of Ethanol”, NSRDS-NBS 48, U.S. Dept. of Commerce, Washington, D.C., 1974.Google Scholar
  16. 15.
    S.W. Benson, J. Chem. Ed. 42, 502 (1965).CrossRefGoogle Scholar
  17. 16.
    J.C. Russell and G.R. Freeman, J. Phys. Chem. 72, 816 (1968).CrossRefGoogle Scholar
  18. 17.
    K.N. Jha and G.R. Freeman, J. Chem. Phys. 51, 2846 (1969).CrossRefGoogle Scholar
  19. 18.
    J.J.J. Myron and G.R. Freeman, Can. J. Chem. 43, 381 (1965), and references therein.CrossRefGoogle Scholar
  20. 19.
    L. Onsager, Phys. Rev. 54, 554 (1938).CrossRefGoogle Scholar
  21. 20.
    K.N. Jha and G.R. Freeman, J. Chem. Phys. 51, 2839 (1969).CrossRefGoogle Scholar
  22. 21.
    G.R. Freeman, second article in the present series, “Basics416 G. R. FREEMAN of radiation chemistry”.Google Scholar
  23. 22.
    F. Buckley and A.A. Maryott, “Tables of Dielectric Dispersion Data”, NBS Circular 589, Washington, D.C., 1958.Google Scholar
  24. 23.
    S.K. Garg and C.P. Smyth, J. Phys. Chem. 69, 1294 (1965).CrossRefGoogle Scholar
  25. 24.
    E. Bauer and D. Massignon, Trans. Faraday Soc. 42A, 12 (1946).CrossRefGoogle Scholar
  26. 25.
    R.H. Cole and D.W. Davidson, J. Chem. Phys. 20, 1389 (1952)CrossRefGoogle Scholar
  27. F.X. Hassion and R.H. Cole, J. Chem. Phys. 23, 1756 (1955).CrossRefGoogle Scholar
  28. 26.
    L. Glasser, J. Crosley and C.P. Smyth, J. Chem. Phys. 57, 3977 (1972).CrossRefGoogle Scholar
  29. 27.
    W. Dannhauser and R.H. Cole, J. Chem. Phys. 23, 1762 (1955).CrossRefGoogle Scholar
  30. 28.
    R. Schiller, Chem. Phys. Letters 5, 176 (1970).CrossRefGoogle Scholar
  31. 29.
    H. Fröhlich, “Theory of Dielectrics”, 2nd edn., Clarendon Press, Oxford, 1958, p. 72.Google Scholar
  32. 30.
    B.P. Jordan, R.J. Sheppard and S. Szwarnowski, J. Phys. D: Appl. Phys. 11, 695 (1978).CrossRefGoogle Scholar
  33. 31.
    The factor 2.3 includes all processes faster than that represented by τ1, and probably contains a contribution from infrared frequencies to which one could ascribe a τ4 ≈ 10−13 s [26]. See the legend of Fig. 3.Google Scholar
  34. 32.
    J.H. Baxendale and P.H.G. Sharp, Int. J. Radiat. Phys. Chem. 8, 707 (1976).CrossRefGoogle Scholar
  35. 33.
    K. Okazaki and G.R. Freeman, Can. J. Chem. 56, 2305 (1978).CrossRefGoogle Scholar
  36. 34.
    Oscillator strength, f = 3.5 x 10-5 <!-math-!> (E)dE, where ε(E) is the decadic molar absorbancy at photon energy E(eV).Google Scholar
  37. 35.
    T.E.M. Sambrook and G.R. Freeman, Can. J. Chem. 53, 1521 (1975)CrossRefGoogle Scholar
  38. 36.
    G.L. Bolton, M.G. Robinson and G.R. Freeman, Can. J. Chem. 54, 1177 (1976).CrossRefGoogle Scholar
  39. 37.
    J.H. Baxendale and P. Wardman, Chem. Comm. 429 (1971).Google Scholar
  40. 38.
    G.L. Bolton, K.N. Jha and G.R. Freeman, Can. J. Chem. 54, 1497 (1976).CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, 1982

Authors and Affiliations

  • Gordon R. Freeman
    • 1
  1. 1.Chemistry DepartmentUniversity of AlbertaEdmontonCanada

Personalised recommendations