Excitation in the Early Solar Nebula — New Experimental Findings

  • G. Arrhenius
  • M. J. Corrigan
  • R. W. Fitzgerald
  • C. Schimmel
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 96)


Inferences about the formation of primordial matter in our solar system rest on analysis of the earliest preserved materials in meteorites, of the structure of the solar system today, and of matter in evolving stellar systems elsewhere.

The isotope distribution in meteorites suggests that molecular excitation processes similar to those observed today in circumstellar regions and dark interstellar clouds were operating in the early solar nebula. Laboratory model experiments together with these observations give evidence on the thermal state of the source medium from which refractory meteoritic dust formed. They indicate that rl o9gnce excitation of the broad isotopic bands of molecules such as 12C 16O, MgO, O2, AlO and OH by strong UV line sources such as H Lyd, Mg II, HB and Ca II may induce selective reactions resulting in the anomalous isotopic composition of oxygen and possibly other elements in refractory oxide condensates in meteorites.

The temperature of the grains condensing from this medium can be determined from the interdiffusion of elements between metal grains in contact with each other; the results of such analyses illustrate the large temperature differential between condensing dust and the surrounding source plasma. The metal diffusion couples mostly consist of platinum or platinum metal alloys in contact with nickel iron, encased in refractory oxide grains. These consist of minerals such as magnesium aluminate (spinel) and calcium aluminum silicates (melilite and pyroxene). The metal interdiffusion shows that they have formed at temperatures ≤ 1000 K; this is less than or about one half of the temperature surmised from consideration of thermodynamic rather than thermal radiation equilibrium.


Isotope Fractionation Interdiffusion Coefficient Source Medium Nickel Iron Space Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfven, H.: 1980, Cosmic plasma Reidel, Dordrecht.Google Scholar
  2. Alfven, H. and Arrhenius, G.: 1976, NASA Spec. Publ. SP-345, U. S. Govt. Print. Off.Google Scholar
  3. Arrhenius, G.: 1972, Proc. Nobel. Symp., 21, p. 117.Google Scholar
  4. Arrhenius, G.: 1978, in S. F. Dermott, ed. Origin of the Solar System Wiley, N. Y.Google Scholar
  5. Arrhenius, G., Corrigan, M. and Fitzgerald, R.: 1980, Lunar Planet. Sci., 11, p. 34.ADSGoogle Scholar
  6. Arrhenius,G., McCrumb.J. and Friedman,N.: 1979, Ap. Space Sci., 60, p. 59.CrossRefGoogle Scholar
  7. Arrhenius, G. and Raub, C.: 1978, J. Less Common Metals, 62, p. 417.ADSCrossRefGoogle Scholar
  8. Clayton, R, Grossman, L. and Mayeda, T.: 1973, Science, 182, 485.ADSCrossRefGoogle Scholar
  9. Clayton, D. and Wickramasinghe, N.: 1976, Ap. Space Sci., 42 p. 463.ADSCrossRefGoogle Scholar
  10. Corrigan, M., Fitzgerald, R., Mendis, D. and Arrhenius, G.: 1980, Meteoritics 15, p. 4.Google Scholar
  11. De,B. and Arrhenius,G.: 1979, Adv. Colloid and Interface Sci., 10, p. 253.CrossRefGoogle Scholar
  12. Gahm, G.: 1977, Astron. Ap. Suppl., 27, p. 277.ADSGoogle Scholar
  13. Geisel, S., Kleinmann, D. and Low, F.: 1970, Ap. Space Sci. p. L101.Google Scholar
  14. Haberkorn, R., Michel-Beyerle, M. and Michel, K.: 1977, Astron. Ap. 55, p. 315.ADSGoogle Scholar
  15. Kirkaldy, J. and Lane, J.: 1966, Can. J. Phys., 44, p. 2059.ADSCrossRefGoogle Scholar
  16. Lehnert, B.: 1970, Cosmical Electrodynamics, 1, P. 219ADSGoogle Scholar
  17. Liuti, G., Dondes, D, and Harteck, P.: 1966, J. Chem. Phys., 44 P. 4052.ADSCrossRefGoogle Scholar
  18. Liuti, G., Dondes, D, and Harteck, P.: 1969, Adv. Chem. Ser. 89, P. 65CrossRefGoogle Scholar
  19. D. and Harteck, P.: 1966, J. Chem. Phys., 44, p. Chem. Ser. 89, p. 65.Google Scholar
  20. Matano, C.: 1933,apan J. Phys., 8, p. 109.Google Scholar
  21. JPenzias, A.: 1980, Purcell, J. D. and Science, 208, p. 663.Google Scholar
  22. Tousey, R.: 1960, JGR, 65, P. 370.ADSCrossRefGoogle Scholar
  23. Tilford, S. G. and Simmons, J. D.: 1972, J. Chem. Phys. Ref. Data. 1, p. 147.ADSCrossRefGoogle Scholar
  24. Turro, N. and Kraeutler, B.: 1978 JACS 100, p. 7432.CrossRefGoogle Scholar
  25. Vikis, A.: 1978, J. Chem. Phys., 69, p. 697.ADSCrossRefGoogle Scholar
  26. Winnewisser, G., Churchill, Co and Walmsley, C.: 1979, Astrophysics of interstellar molecules. In: G. Chantry, ed., Modern Aspects of Microwave Spectroscopy, Acad. Press, N. Y.Google Scholar

Copyright information

© D. Reidel Publishing Company 1982

Authors and Affiliations

  • G. Arrhenius
    • 1
  • M. J. Corrigan
    • 1
  • R. W. Fitzgerald
    • 1
  • C. Schimmel
    • 1
  1. 1.Scripps Institution of OceanographyLa JollaUSA

Personalised recommendations