Advertisement

Ages of the Solar System: Isotopic Dating

Conference paper
  • 76 Downloads
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 85)

Abstract

The major concern of this section will be to outline the ways in which measurements of isotope abundances have been used to determine the chronology of the origin and evolution of the solar system. In passing it should be remembered that the use of isotopic information is by no means restricted simply to the measurement of time scales and, particularly in recent years, isotope abundances have been used to investigate problems as diverse as the heat sources in the early solar nebula and the chemical evolution of the Earth’s mantle. The fundamental property of isotopes which makes them especially useful for dating and other applications is the fact that, apart from a limited amount of mass fractionation, the composition of an isotopic mixture is unaffected by chemical processes. In those cases where mass fractionation does occur this effect may itself be useful, particularly as a source of information on temperatures. Since our main theme is time the events discussed in this section will be most conveniently presented as a chronological sequence, progressing from some time before the solar system existed down to the present day.

Keywords

Solar System Solar Nebula Carbonaceous Chondrite Lunar Planet Early Solar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, T., Papanastassiou, D.A. and Wasserburg, G.J: 1977. Ap. J. (Letters), 211, pp. 107–110.ADSCrossRefGoogle Scholar
  2. 2.
    Kelly, W.R. and Wasserburg, G.J: 1978, Geophys. Res. Lett., 5, pp. 1079–1082.ADSCrossRefGoogle Scholar
  3. 3.
    Huneke, J.C., Armstrong, J.T. and Wasserburg, G.J: 1981, Lunar Planet. Sci. XII, pp. 482–484.ADSGoogle Scholar
  4. 4.
    Chen, J.H. and Wasserburg, G.J: 1981, Earth Planet. Sci. Lett., 52, pp.1–15ADSCrossRefGoogle Scholar
  5. 5.
    Reynolds, J.H: 1963, J. Geophys. Res., 68, pp. 2939–2956.ADSCrossRefGoogle Scholar
  6. 6.
    Jordan, J., Kirsten, T. and Richter, H: 1980, Z. Naturforsch., 35a, pp.145–170.ADSGoogle Scholar
  7. 7.
    Papanastassiou, D.A. and Wasserburg, G.J: 1969, Earth Planet. Sci. Lett., 5, pp. 361–376.ADSCrossRefGoogle Scholar
  8. 8.
    Gray, C.M., Papanastassiou, D.A. and Wasserburg, G.J: 1973. Icarus, 20, pp. 213–239ADSCrossRefGoogle Scholar
  9. 9.
    Allegre, C.J., Birck, J.L., Fourcade, S. and Semet, M.P: 1975, Science, 187, pp.436–438.ADSCrossRefGoogle Scholar
  10. 10.
    Tatsumoto, M., Unruh, M. and Desborough, G.A: 1976, Geochim. Cosmochim. Acta, 40, pp. 617–634.ADSCrossRefGoogle Scholar
  11. 11.
    Chen, J.H. and Tilton, G.R: 1976, Geochim. Cosmochim. Acta., 40, pp. 635–643.ADSCrossRefGoogle Scholar
  12. 12.
    Viasserburg, G.J., Terra, F., Papanastassiou, D.A. and Huneke, J.C: 1977, Earth Planet. Sci. Lett., 35, pp. 294–316.ADSCrossRefGoogle Scholar
  13. 13.
    Turner, G., Enright, M.C. and Cadogan, P.H: 1978, Proc. Lunar Planet. Sci. Conf. 9th., pp. 989–1025.Google Scholar
  14. 14.
    Wood, J.A: 1979, in Asteroids (ed. T. Gehrels), pp. 849–891, U. of Arizona Press.Google Scholar
  15. 15.
    Pellas, P. and Storzer, D: 1981, Proc. Roy. Soc. London A, 374, pp. 253–270.ADSCrossRefGoogle Scholar
  16. 16.
    Wanke, H: 1981, Phil. Trans. Roy. Soc. London A, in press.Google Scholar
  17. 17.
    Turner, G., Cadogan, P.H. and Yonge, C.J: 1973, Proc. Lunar Sci. Conf. 4th., pp.1889–1914.Google Scholar
  18. 18.
    Terra, F., Papanastassiou, D.A. and Wasserburg, G.J: 1974, Earth Plaruet. Sci. Lett., 22, pp. 1–21.ADSCrossRefGoogle Scholar
  19. 19.
    Wetherill, G.W: 1975, Proc. Lunar Sci. Conf. 6th, pp. 1539–1561.Google Scholar
  20. 20.
    Nyquist, L.E: 1977, Phys. Chem. Earth, 10, pp. 103–142.ADSGoogle Scholar
  21. 21.
    Turner, G: 1977, Phys. Chem. Earth, 10, pp. 145–195.ADSGoogle Scholar
  22. 22.
    Oberli, F., McCulloch, M.T., Terra, F., Papanastassiou, D.A. and Wasserburg, G.J: 1978, Lunar Planet. Sci. IX, pp.832–834.ADSGoogle Scholar
  23. 23.
    Maurer, P., Eberhardt, P., Geiss, J., Grogler, N., Stettler, A., Brown, G.M., Peckett, A. and Krahenbuhl, U: 1978, Geochim. Cosmochim. Acta., 42, pp. 1687–1720.ADSCrossRefGoogle Scholar
  24. 24.
    Papanastassiou, D.A., DePaulo, D.J. and Wasserburg, G.J: 1977, Proc. Lunar Sci. Conf. 8th, pp.1639–1672.Google Scholar
  25. 25.
    Guggisberg, S., Eberhardt, P., Geiss, J., Grogler, N., Stettler, A., Brown, G.M. and Peckett, A: 1979, Proc. Lunar Planet. Sci. Conf. 10th, pp. 1–39.Google Scholar
  26. 26.
    Burnett, D.S. and Woolum, D: 1977, Phys. Chem. Earth, 10, pp. 63–101.ADSGoogle Scholar
  27. 27.
    Pillinger, C.T: 1979, Rep. Prog. Phys., 42, pp. 897–961.ADSCrossRefGoogle Scholar
  28. 28.
    Curtis, D.B. and Wasserburg, G.J: 1977, Proc. Lunar Sci. Conf. 8th, pp. 3575–3593Google Scholar
  29. 29.
    Lugmair, G.W: 1974, Meteoritics, 9, p. 369.ADSGoogle Scholar
  30. 30.
    Turner, G: 1981, Proc. Roy. Soc. London A, 374, pp. 281–298.ADSCrossRefGoogle Scholar
  31. 31.
    Turner, G: 1979, Proc. Lunar Planet. Sci. Conf. 10th, pp. 1917–1941.Google Scholar

Copyright information

© D. Reidel Publishing Company 1982

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of SheffieldSheffieldUK

Personalised recommendations