Origin of Regular Satellites

  • Stuart J. Weidenschilling
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 85)

Abstract

The regular satellites of Jupiter and Saturn are generally believed to have accreted within cooling circumplanetary nebulae. Small silicate bodies are lost into the planet by gas drag before ice can condense. Larger silicate protosatellites survive by exerting tidal torques on the gas, clearing low-density “tunnels” around their orbits. The nebula is thus divided into series of gas rings depleted in silicates. Cooling eventually allows ice condensation, yielding another generation of icy bodies. Collisional accretion of these objects accounts for stochastic density variations of Saturn’s inner satellites. High dynamic pressure may have prevented accretion in the inner part of the Jovian nebula; J5 may be an ablated remnant of a larger body.

Keywords

Dust Silicate Torque Titan Settling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Cameron, A.G.W., and Pollack, J.: 1976, in “Jupiter” (T. Gehrels, Ed.), U. of Ariz. Press, pp. 61–84.Google Scholar
  2. 2).
    Bodenheimer, P.: 1974, Icarus 23, pp. 319–325.ADSCrossRefGoogle Scholar
  3. 3).
    Perri, F., and Cameron, A.G.W.: 1974, Icarus 22, pp. 416–425.ADSCrossRefGoogle Scholar
  4. 4).
    Bodenheimer, P.: 1977, Icarus 31, pp. 356–368.ADSCrossRefGoogle Scholar
  5. 5).
    Miki, S.: 1980, preprint.Google Scholar
  6. 6).
    Pollack, J., and Reynolds, R.: 1974, Icarus 21, pp. 248–253.ADSCrossRefGoogle Scholar
  7. 7).
    Graboske, H., Pollack, J., Grossman, A., and Olness, R.: 1975, Astrophys. J. 199, pp. 265–281.ADSCrossRefGoogle Scholar
  8. 8).
    Pollack, J., Grossman, A., Moore, R., and Graboske, H.: 1976, Icarus 29, pp. 35–48.ADSCrossRefGoogle Scholar
  9. 9).
    Weidenschilling, S.J.: 1977, Astrophys. Space Sci. 51, pp. 153–158.ADSCrossRefGoogle Scholar
  10. 10).
    Safronov, V.S.: 1972, NASA TTF-677.Google Scholar
  11. 11).
    Weidenschilling, S.J.: 1980, Icarus 44, pp. 172–189.ADSCrossRefGoogle Scholar
  12. 12).
    Goldreich, P., and Ward, W.R.: 1973, Astrophys. J. 183, pp. 1051–1061.ADSCrossRefGoogle Scholar
  13. 13).
    Whipple, F.L.: 1972, in “From Plasma to Planet” (A. Elvius, Ed.), Wiley, pp. 211–232.Google Scholar
  14. 14).
    Adachi, I., Hayashi, C., and Nakazawa, K.: 1976, Prog. Theoret. Phys. 56; pp. 1756–1771.ADSCrossRefGoogle Scholar
  15. 15).
    Weidenschilling, S.J.: 1977, Mon. Not. Roy. Astron. Soc. 180, pp. 57–70.ADSGoogle Scholar
  16. 16).
    Lin, D.C., and Papaloizou, J.: 1979, Mon. Not. Roy. Astron. Soc. 186, pp. 799–812.ADSMATHGoogle Scholar
  17. 17).
    Lynden-Bell, D., and Pringle, J.: 1974, Mon. Not. Roy. Astron. Soc. 168, pp. 603–637.ADSGoogle Scholar
  18. 18).
    Coradini, A., Federico, C., and Magni, G.: 1981, Astron. Astrophys. 99, pp. 255–261.ADSGoogle Scholar
  19. 19).
    Smith, B., plus 26 others: 1981, Science 212, pp. 163–191.ADSCrossRefGoogle Scholar
  20. 20).
    Wetherill, G.W.: 1978, in “Protostars and Planets” (T. Gehrels, Ed.), U. of Ariz. Press, pp. 565–598.Google Scholar
  21. 21).
    Veverka, J., Thomas, P., Gradie, J., Morrison, D., and Davies, M.: 1980, NASA TM-81776, pp. 343–344.Google Scholar

Copyright information

© D. Reidel Publishing Company 1982

Authors and Affiliations

  • Stuart J. Weidenschilling
    • 1
  1. 1.Planetary Science InstituteTucsonUSA

Personalised recommendations