Advertisement

High Precision Tracking of Synchronous Satellites for Geophysical Purposes

  • L. Anselmo
  • B. Bertotti
  • P. Farinella
  • A. Milani
  • A. M. Nobili
  • F. Sacerdote
Conference paper
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 85)

Abstract

The possibility of tracking very accurately a geosynchronous satellite is very interesting (a) to improve the knowledge of the resonant geopotential coefficients (hence the knowledge of the geoid) (b) to determine with higher accuracy the radial departure of the sea surface from the geoid and eventually its seasonal or long period variations. We show that both laser (if the spacecraft has laser retroflector arrays on board) and optical tracking of many currently used telecommunication satellites, plus a good modelling of non-gravitational perturbations in the orbit propagation, could provide new interesting results.

Keywords

Radiation Pressure Gravity Gradient Solar Radiation Pressure Precise Orbit Determination Optical Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Allan, R.R.: 1963, Planet.Space Sci. 11, pp. 1325–1334.ADSCrossRefGoogle Scholar
  2. 2).
    Anselmo, L., Farinella, P., Milani, A., and Nobili, A.M.: 1981, Presented at the International ESA Symposium on “Spacecraft Flight Dynamics”, Darmstadt, 1981. In press.Google Scholar
  3. 3).
    Balmino, G., Reigber, C., and Maynot, B.: 1976, The GRIM 2 Earth Gravity Field Model, Deutsche Geodätische Kommission, München.Google Scholar
  4. 4).
    Bertotti, B., Bevilacqua, R., Farinella, P., Gianni, P., Milani, A., and Nobili, A.M.: 1979, Internal Report, Osservatorio Astronomico di Brera, Merate, n.8/80.Google Scholar
  5. 5).
    Catalano, S.: 1981, Private communication.Google Scholar
  6. 6).
    Catalano, S., Milani, A., and Nobili, A.M.: 1981, in preparation.Google Scholar
  7. 7).
    Farinella, P., Milani, A., Nobili, A.M., and Sacerdote, F.: 1980, in Reference Coordinate Systems for Earth Dynamics, vol.86, p.271, Reidel Publishing Company, Dordrecht.Google Scholar
  8. 8).
    Gaposchkin, E.M.: 1979, Harvard Smithsonian Center for Astrophysics, Preprint n.1092.Google Scholar
  9. 9).
    Gedeon, G.S.: 1969, Celestial Mechanics, 1, pp.167–189.ADSMATHCrossRefGoogle Scholar
  10. 10).
    Kamel, A., Eckman, D., and Tibbitts, R.: 1973, Celestial Mechanics 8, pp.129–148.ADSCrossRefGoogle Scholar
  11. 11).
    Lerch, F.J., Klosko, S.M., Laubsher, R.E., and Wagner, C.A.: 1979, J.Geophys.Res. 84, pp.3897–3916.ADSCrossRefGoogle Scholar
  12. 12).
    Mather, R.S., Lerch, F.J., Rizos, C., Masters, E.G., and Hirsch, B.: 1978, Presented at the International Symposium on “The Use of Artificial Satellites for Geodesy and Geodynamics”, Lagonissi, Greece 1978.Google Scholar
  13. 13).
    Milani, A., and Nobili, A.M.: 1980, Internal Report n.1/80, Gruppo di Meccanica Spaziale, Università di Pisa.Google Scholar
  14. 14).
    Wagner, C.A.: 1965, J.Geophys.Res. 70, pp.1566–1568.ADSCrossRefGoogle Scholar
  15. 15).
    Wagner, C.A.: 1966, J.Geophys.Res. 71, pp.1703–1711.ADSGoogle Scholar
  16. 16).
    Wagner, C.A.: 1970, J.Geophys.Res. 75, pp.6662–6674.ADSCrossRefGoogle Scholar
  17. 17).
    Wagner, C.A.: 1973, J.Geophys.Res. 78, pp.470–475.ADSCrossRefGoogle Scholar
  18. 18).
    Wagner, C.A., Lerch, F.J., Brownd, J.E., and Richardson, J.A.: 1977, J.Geophys.Res. 82, pp.901–914.ADSCrossRefGoogle Scholar
  19. 19).
    Wagner, C.A., and Lerch, F.J.: 1978, Planet.Space Sci. 26, pp.1081–1140.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1982

Authors and Affiliations

  • L. Anselmo
    • 1
  • B. Bertotti
    • 1
  • P. Farinella
    • 2
  • A. Milani
    • 3
  • A. M. Nobili
    • 3
  • F. Sacerdote
    • 3
  1. 1.Istituto di Fisica TeoricaUniv.di PaviaItaly
  2. 2.Osservatorio Astronomico di MerateItaly
  3. 3.Istituto Matematico “L.Tonelli”Univ.di PisaItaly

Personalised recommendations