Skip to main content

Recent Developments of Selective Detectors in GC

  • Conference paper
Analysis of Organic Micropollutants in Water

Summary

The problem of identifying the substances eluted from the chromatographic column has always been of great importance in gas chromatography. Many types of detectors, capable of converting the physical and/or chemical properties of eluted compounds into useful, generally electrical signals, have been proposed to monitor the effluent from a gas chromatograph over about thirty years of gas chromatographic work. Some devices are general purpose universal detectors, very useful because they respond to anything (or almost anything) present in the carrier gas. Other devices are selective detectors which can give information on some elements or chemical groups present in the molecules. In complex mixtures of natural, environmental or biological origin, selective detectors provides chromatographic profiles complementary to the response of universal detectors and thus more useful information on the chemical functionalities required for structural elucidation.

A very critical application domain for gas chromatographic detectors concerns capillary columns. High sensitivities and small detection cell volumes are mandatory in view of the severe needs of high resolution gas chromatography. Selective detectors have played an important role in capillary GC; many compounds have been traceq, which otherwise would have remained unnoticed with less sensitive universal detectors. The versatility of GC systems when selective detectors are used can be increased by using different configurations of multiple column and/or detectors. It is now technically feasible to place two or more detectors in parallel or in series to obtain dual or multiple detection systems which can simultaneously detect compounds belonging to different chemical classes and produce very useful selective chromatograms. Another very important application of selective detectors is the analysis of particular compounds which are unstable and/or not volatile. Selective derivatization of the samples might be carried out to permit their GC analysis and detection. This derivatization enhances the usefulness of selective detectors since it increases the sensitivity of the system, converts the substances to be analyzed in more stable and volatile compounds, and reduces the sample manipulations and possibility of mistake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jentzsch D., Otte E., “Detektoren in der Gas Chromatographie”, Akademische Verlagsgesellschaft, Frankfurt a.M., 1970.

    Google Scholar 

  2. David D.J., “Gas Chromatographic Detectors”, Wiley-Interscience, New York, 1974.

    Google Scholar 

  3. Brazhnikov V.V., “Differential Detectors for Gas Chromatography”, Nauka, Moscow, 1974

    Google Scholar 

  4. Rotin V.A., “Radioionization Detection in Gas Chromatography”, Atomizdat, Moscow, 1974.

    Google Scholar 

  5. Sevcik J., “Detectors in Gas Chromatography”, Elsevier Scientific Publishing Company, Amsterdam, 1976.

    Google Scholar 

  6. Krejci H., Pajurek J., “Classification of Detectors Respecting their Sensitivity and Selectivity in GC and LC” in “Trace Analysis in Column Chromatography”, H. Krejci (editor), House of Techniques, Ostrava, 1977, pp. 11–36.

    Google Scholar 

  7. Sullivan J.J., “Detectors” in “Modern Practice of Gas Chromatography”, R.L.Grob (editor), J.Wiley & Sons, New York, 1977, pp. 213–288.

    Google Scholar 

  8. Juvet R.S.Jr., Cram S.P., “Gas Chromatography”, Anal. Chem. 42 (5), lR - 22R (1970).

    Article  Google Scholar 

  9. Cram S.P., Juvet R.S.Jr., “Gas Chromatography”, Anal. Chem. 44 (5), 213R - 241R (1972).

    Article  CAS  Google Scholar 

  10. Juvet R.S.Jr., Cram S.P., “Gas Chromatography”, Anal. Chem. 46 (5), 101R - l24R (1974).

    Article  CAS  Google Scholar 

  11. Cram S.P., Juvet S.R.Jr., “Gas Chromatography”, Anal. Chem. 48 (5), 411R - 442R (1976)

    Article  CAS  Google Scholar 

  12. Cram S.P., Risby T.H., “Gas Chromatography”, Anal. Chem. 50 (5), 2l3R - 243R (1978).

    Article  Google Scholar 

  13. Cram S.P., Risby T.H., Field L.R., Yu W.-L., “Gas Chromatography”, Anal. Chem. 52 (5), 324R - 360R (1980).

    Article  CAS  Google Scholar 

  14. Karmen A., “Ionization Detectors for Gas Chromatography”, Advances in Chromatography 2, 293–336 (1966), M.Dekker, New York.

    CAS  Google Scholar 

  15. Coulson D.M., “Electrolytic Conductivity Detection in Gas Chromatography”, Advances in Chromatography 3, 197–214 (1966), M.Dekker, New York.

    CAS  Google Scholar 

  16. Winefordner J.D., Glenn T.H., “Non-ionization Detectors and their Use in Gas Chromatography”, Advances in Chromatography 5, 263–300 (1968), M.Dekker, New York.

    CAS  Google Scholar 

  17. Brazhnikov V. V., Gur’ev H. V., Sakodynsky K. I., “Thermionic Detectors in Gas Chromatography”, Chromatogr. Revs. 12, 1–41 (1970).

    Article  CAS  Google Scholar 

  18. Krejci M., Dressler M., “Selective Detectors in Gas Chromatography”, Chromatogr. Revs. 13, 1–59 (1970).

    Article  CAS  Google Scholar 

  19. Bocek P., Janak J., “Flame Ionization Detection (Flame Ionization Phenomena) ”, Chromatogr. Revs. 15, 111–150 (1971).

    Article  CAS  Google Scholar 

  20. Hartman C.H., “Gas Chromatography Detectors”, Anal. Chern. 43 (2), 113 A - l25A (1971).

    Article  Google Scholar 

  21. Aue W.A., “Flame Detectors for Residue Analysis by Gas-Liquid Chromatography”, Adv. Chern. Ser. 104 (Pesticide Identification of the Residue Level), 39–72 (1971).

    CAS  Google Scholar 

  22. Selucky M.L., “Specific Gas Chromatography Detectors”, Chromatographia, 4, 425–434 (1971).

    Article  CAS  Google Scholar 

  23. Selucky M.L., “Specific Gas Chromatography Detectors. Part II: Electrolytic Conductivity Detector”, Chromatographia 5, 359–366 (1972).

    Article  CAS  Google Scholar 

  24. Natusch D.F.S., Thorpe T.M., “Element selective Detectors in Gas Chromatography”, Anal. Chern. 45, 1184A - 1194A (1973).

    Article  CAS  Google Scholar 

  25. Aue W.A., Kapila S., “The Electron Capture Detector - Controversies, Comments and Chromatograms”, J.Chromatogr.Sci. 11, 255–263 (1973).

    CAS  Google Scholar 

  26. Pellizzari E.D., “Electron Capture Detection in Gas Chromatography”, J.Chromatogr. 98, 323–361 (1974).

    Article  CAS  Google Scholar 

  27. Aue W.A., “Detectors for Use in GC Analysis of Pesticides”, J. Chromatogr. Sci. 13, 329–333 (1975).

    CAS  Google Scholar 

  28. Adlard E.R., “Review of Detectors for Gas Chromatography. I. Universal Detectors”, CRC Crit.Rev.Anal.Chem. 5, 1–11 (1975).

    Article  CAS  Google Scholar 

  29. Adlard E.R., “Review of Detectors for Gas Chromatography. II. Selective Detectors”, CRC Crit.Rev.Anal.Chem. 5, 13–36 (1975).

    Article  CAS  Google Scholar 

  30. Pigliucci R., Averill W., Purcel J.E., Ettre L.S., “The Routine Use of Selective Gas Chromatographic Detectors”, Chromatographia 8, 165–175 (1975).

    Article  CAS  Google Scholar 

  31. Farwell S.O., Rasmussen R.A., “Limitations of the FPD and ECD in Atmospheric Analysis: a Review”, J.Chromatogr.Sci. 14, 224–234 (1976).

    CAS  Google Scholar 

  32. Cochrane W.P., Greenhalg R., “Evaluation and Comparison of Selective Gas Chromatographic Detectors for the Analysis of Pesticide Residues”, Chromatographia 9, 255–265 (1976).

    Article  CAS  Google Scholar 

  33. Taylor J.F., “Selective Detectors in Gas Chromatography”, Proc. Anal. Div.Chem.Soc. 13 (6), 168–175 (1976).

    CAS  Google Scholar 

  34. Poole C.F., ECD in Organic Chemistry. Soliciting a Response from the Electron Capture Detector toward organic Molecules, Chem. Ind. (London) 1976, 479–482.

    Google Scholar 

  35. Ettre L.S., “Selective Detection in Column Chromatography”, J. Chromatogr. Sci. 16, 396–4l7 (1978).

    CAS  Google Scholar 

  36. Knapman E.E.H. (editor), Developments in Chromatography - 1, Applied Science Publishers, London, 1978.

    Google Scholar 

  37. Sevcik J., Lips J.E., “Meaning of GC Detector Characteristics”, Chromatographia 12, 693–703 (1979).

    Article  CAS  Google Scholar 

  38. Ettre L.S., “Selective Detection in Chromatographic Analysis”, in “Trace Organic Analysis: A New Frontier in Analytical Chemistry”, H. S. Hertz, S.N. Chesler (editors), NBS SP 519, National Bureau of Standards, Washington, 1979, pp. 547–585.

    Google Scholar 

  39. Vessman J., “Quantitation of Non-halogenated Compounds by Electron Capture Gas Chromatography”, Chromatogr.Revs. 24, 313–324 (1980).

    Article  Google Scholar 

  40. Devaux P., Guiochon G., “Etude et Réalisation d’un Detecteur à Capture Electronique fonctionnant avec des Colonnes Capillaires”, Chromatographia 2, 151–157 (1969).

    Article  Google Scholar 

  41. Grob K., Grob G., “Trace Analysis on Capillary Columns. Selected Practical Applications: Insecticides in Raw Butter Extract; Aroma Head Space from Liquors; Auto Exhaust Gas”, J. Chromatogr. Sci. 8, 635–639 (1970).

    CAS  Google Scholar 

  42. Fenimore D.C., Loy P.R., Zlatkis A., “High Temperature Tritium Source for Electron Capture Detector. Application to a low Volume Detector”, Anal.Chem. 43, 1972–1975 (1971).

    Article  CAS  Google Scholar 

  43. Goretti G., Possanzini M., “Coupling of the Flame Photometric Detector and the Free Fatty Acid Phase (FFAP) Capillary Column in the Trace Analysis for Sulphur Compounds”, J.Chromatogr. 77, 317–321 (1973).

    Article  CAS  Google Scholar 

  44. Franken J.J., Vader H.L., “Open Hole Tubular Columns in Pesticide Analysis”, Chromatographia 6, 22–27 (1973).

    Article  CAS  Google Scholar 

  45. Franken J.J., Trijbels M.M.F., “Preliminary Studies in the Analysis of Biological Amines by Means of Glass Capillary Columns. I. Model Compounds”, J. Chromatogr. 91, 425–431 (1974).

    Article  CAS  Google Scholar 

  46. Pellizzari E.D., “High Resolution Electron Capture Gas-Liquid Chromatography”, J.Chromatogr. 92, 299–308 (1974).

    Article  CAS  Google Scholar 

  47. Hartigan J.J., Purcell J.E., Novotny M., Mc Connell M.L., Lee M.L., “Analytical Performance of a Novel Nitrogen Sensitive Detector and its Applications with Glass Open Tubular Column”, J.Chromatogr. 99, 339–348 (1974).

    Article  CAS  Google Scholar 

  48. Schulte E., Acker L., “Gas-Chromatographie mit Glascapillaren bei Temperaturen bis zu 320°C und ihre Anwendung zur Trennung von Polychlorbiphenylen”, Z.Anal. Chem. 268, 260–267 (1974).

    Article  CAS  Google Scholar 

  49. Grob K., “The Glass Capillary Column in Gas Chromatography. A Tool and a Technique”, Chromatographia 8, 423–433 (1975).

    Article  CAS  Google Scholar 

  50. Krijgsman W., Van de Kamp C.G., “Analysis of Organophosphorus Pesticides by Capillary Gas Chromatography with Flame Photometric Detection”, J.Chromatogr. 117, 201–205 (1976).

    Article  CAS  Google Scholar 

  51. Nygren S., Mattsson P.E., “Flow Programming in Glass Capillary Column- Electron Capture Gas Chromatography by Using the Valve in the Splitter Line”, J.Chromatogr. 123, 101-l08 (1976).

    Article  CAS  Google Scholar 

  52. Mattsson P.E., Nygren S., “Gas Chromatographic Determination of Polychlorinated Biphenyls and Some Chlorinated Pesticides in Sewage Sludge Using a Glass Capillary Column”, J.Chromatogr. 124, 265–275 (1976).

    Article  CAS  Google Scholar 

  53. Blomberg L., “Gas Chromatographic Separation of Some Sulphur Compounds on Glass Capillary Columns Using Flame Photometric Detection”, J.Chromatogr. 125, 389–397 (1976).

    Article  CAS  Google Scholar 

  54. Buser H.-R., “High-Resolution Gas Chromatography of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans”, Anal.Chem. 48, 1553–1557 (1976).

    Article  CAS  Google Scholar 

  55. Buser H.-R., “Preparation of Qualitative Standard Mixtures of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans by Ultraviolet and gamma-Irradiation of the Octachloro Compounds”, J.Chromatogr. 129, 303–307 (1976).

    Article  CAS  Google Scholar 

  56. Novotny M., Haskarinec M.P., Steverink A.T.G., Farlow R., “High-Resolution Gas Chromatography of Plasma Steroidal Hormones and -Their Metabolites”, Anal.Chem. 48, 468–472 (1976)

    Article  CAS  Google Scholar 

  57. Rejthar L., Tesarik K., “Performance Characteristics of a System Containing a Capillary Column and an Electron-Capture Detector”, J.Chromatogr. 131, 404–407 (1977).

    Article  CAS  Google Scholar 

  58. Brechbiihler B., Gay L., Jaeger H., “A Micro Electron Capture Detector for Temperature Programmed Analysis with Capillary Columns for a Wide Range of Applications”, Chromatographia 10, 478–486 (1977).

    Article  Google Scholar 

  59. Franken J.J., De Nijs R.C.M., Schulting F.L., “Deactivation of Glass Open-Tubular Columns with PEG 20H via the Gas Phase”, J. Chro matogr. 144, 253–256 (1977)

    Article  CAS  Google Scholar 

  60. Evrard E., Razzouk C., Roberfroid M., Mercier N., Bal M., “Isothermal Gas Chromatography with Wall-Coated Glass Capillary Columns, Electron-Capture Detection and a Solid Injector. I. Avoidance of Ghost Peaks”, J. Chromatogr. 161, 97–102 (1978).

    Article  CAS  Google Scholar 

  61. Razzouk C., Evrard E., Lhoest G., Roberfroid N., Mercier M., “Isothermal Gas Chromatography with Wall-Coated Glass Capillary Columns, Electron-Capture Detection and a Solid Injector. II. Application to the Assay of 2-Fluorenylacetamide N-Hydroxylase Activity in a Rat-Liver Microsomal System”, J.Chromatogr. 161, 103–109 (1978).

    Article  CAS  Google Scholar 

  62. Jacob K., Falkner C., Vogt W., “Derivatization Method for the High-Sensitive Determination of Amines and Amino Acids as Dimethylthiophosphinic Amides with the Alkali Flame Ionization Detector”, J. Chromatogr. 167, 67–75 (1978).

    Article  CAS  Google Scholar 

  63. Hild J., Schulte E., Thier H.P., “Trennung von Organophosphor-Pestizi den und ihren Netaboliten auf Glaskapillarsaulen”, Chromatographia 11, 397–399 (1978).

    Article  CAS  Google Scholar 

  64. De Leenheer A.P., Gelijkens C.F., “Quantification of 5-Fluorouridine in Human Urine by Capillary Gas-Liquid Chromatography with a Ni trogen-Selecti ve Detector”, J. Chromatogr. Sci. 16, 552–555 (1978).

    Google Scholar 

  65. Matisova E., Krupcik J., Liska O., “Quantitative Analysis of s-Triazi ne Herbidides by Glass Capillary Columns Gas-Liquid Chromato graphy”, J. Chromatogr. 173, 139–146 (1979).

    Article  CAS  Google Scholar 

  66. Brotell H., Ahnfelt N.O., Ehrsson H., Eksborg S., “Electron Capture Gas Chromatography with Splitless Injection on Isothermally Operated Wide-Bore Glass Capillary Columns”, J.Chromatogr. 176, 19–24 (1979).

    Article  Google Scholar 

  67. Fitzpatrick F.A., Stringfellow D.A., Maclouf J., Rigaud M., “Glass Capillary Gas Chromatography with Electron-Capture Detection”, J.Chromatogr. 177 51–60 (1979).

    Article  CAS  Google Scholar 

  68. Magin D.F., “Preparation and Gas Chromatographic Characterization of Benzyloximes and p-Nitrobenzyloximes of Short-Chain (C l -C7) Carbonyls”, J.Chromatogr. 178, 219–227 (1979).

    Article  CAS  Google Scholar 

  69. Boe B., Egaas E., “Qualitative and Quantitative Analyses of Polychlorinated Biphenyls by Gas-Liquid Chromatography”, J.Chromatogr. 180, 127–132 (1979).

    Article  Google Scholar 

  70. Wright B.W., Lee M.L., Booth G.M., “Determination of Triphenyltin Hydroxide Derivatives by Capillary GC and Tin-Selective FPD”, HRC&CC 2, 189–190 (1979).

    Article  CAS  Google Scholar 

  71. Farwell S.O., Gluck S.J., Bamesberger W.L., Schulte T.M., Adams D.F., “Determination of Sulfur-Containing Gases by a Deactivated Cryogenic Enrichment and Capillary Gas Chromatographic System”, Anal. Chem. 51, 609–615 (1979).

    Article  CAS  Google Scholar 

  72. Kern H., Brander B., “Precision of an Automated All-Glass Capillary Gas Chromatography System with an Electron Capture Detector for the Trace Analysis of Estrogens” HRC&CC 2, 312–318 (1979).

    Article  CAS  Google Scholar 

  73. Yang F.J., Cram S.P., “Characteristics and Performance of Gas Chromatographic Detectors with Glass Capillary Columns”, HRC&CC 2, 487–496 (1979).

    Article  CAS  Google Scholar 

  74. DeLeon I.R., Maberry M.A., Overton E.B., Raschke C.K., Remele P.C., Steele C. F., Warren V. L., Laseter J. L., “Rapid Gas Chromatographic Method for the Determination of Volatile and Semivolatile Organochlorine Compounds in Soil and Chemical Waste Disposal Site Samples”, J. Chromatogr. Sci. 18, 85–88 (1980).

    CAS  Google Scholar 

  75. Lieu Fong-Yi, Jennings W., “Separation of Histamine and its Metabolites Using Glass Capillary Gas Chromatography and a Nitrogen Detector”, HRC&CC 3, 89–90 (1980).

    Google Scholar 

  76. Edlund P.O., “Determination of Clonidine in Human Plasma by Glass Capillary Gas Chromatography with Electron-Capture Detection”, J.Chromatogr. 187, 161–169 (1980).

    Article  CAS  Google Scholar 

  77. Pitts F.N.Jr., Yago L.S., Aniline O., Pitts A.F., “Capillary Gas Chromatography with a Nitrogen Detector for Measurement of Phencyclidine, Ketamine and Other Arylcycloalkylamines in the Picogram Range”, J. Chromatogr. 193, 157–159 (1980).

    Article  CAS  Google Scholar 

  78. Good B.W., Parrish M.E., Douglas D.R., “Volatile Phase Profiling of Mainstream Smoke by Glass Capillary Gas-Chromatographic Techniques”, HRC&CC 3, 447–451 (1980)

    Article  CAS  Google Scholar 

  79. Fogelqvist E., Josefsson B., Roos C., “Determination of Carboxylic Acids and Phenols in Water by Extractive Alkylation Using Pentafluorobenzylation, Glass Capillary GC and Electron Capture Detection”, HRC&CC 3, 568–574 (1980).

    Article  CAS  Google Scholar 

  80. Oliver B.G., Bothen K.D., “Determination of Chlorobenzenes in Water by Capillary Gas Chromatography”, Anal.Chem. 52, 2066–2069 (1980).

    Article  CAS  Google Scholar 

  81. Hsu F., Anderson J., Zlatkis A., “A Practical Approach for Optimization of a Selective Gas-Chromatographic Detector by a Sequential Simplex Method” HRC&CC 3, 648–650 (1980).

    Article  CAS  Google Scholar 

  82. Huibregtse-Minderhout I., Van Der Kerk-Van Hoof A.C., Wijkens P., Biessels H. W.A., Salemink C.A., “Glass Capillary Column Gas Chromatographic Method for Simultaneous Quantitative Determination of Insect Juvenile Hormones at the Picogram Level: A Comparative Study of Various Halogenated Derivatives”, J.Chromatogr. 196, 425–434 (1980).

    Article  CAS  Google Scholar 

  83. Guerret M., “Determination of Pindolol in Biological Fluids by an Electron-Capture Gas-Liquid Chromatographic Method on a Wall-Coated Open Tubular Column”, J.Chromatogr. 221, 387–392 (1980).

    Article  CAS  Google Scholar 

  84. Edlund P.O., “Determination of Opiates in Biological Samples by Glass Capillary Gas Chromatography with Electron-Capture Detection”, J.Chromatogr. 206, 109–116 (1981).

    Article  CAS  Google Scholar 

  85. Wolf M., Deleu R., Copin A., “Separation of Pesticides by Capillary Gas Chromatography. Part 2: Organophosphorus Insecticides”, HRC&CC 4, 346–347 (1981).

    Article  CAS  Google Scholar 

  86. Wehner T.A., Seiber J.N., “Analysis of N-Methylcarbamate Insecticides and Related Compounds by Capillary Gas Chromatography”, HRC&CC 4, 348–350 (1981).

    Article  CAS  Google Scholar 

  87. Douse J.M.F., “Trace Analysis of Explosives at the Low Picogram Level by Silica Capillary Column Gas-Liquid Chromatography with Electron-Capture Detection”, J. Chromatogr. 208, 83–88 (1981).

    Article  CAS  Google Scholar 

  88. McKague A.B., “Phenolic Constituents in Pulp Mill Process Streams”, J. Chromatogr. 208, 287–293 (1981).

    Article  CAS  Google Scholar 

  89. Connor J., “The Electron Capture Detector. II Design and Performance”, J.Chromatogr. 210, 193–210 (1981).

    Article  CAS  Google Scholar 

  90. Oaks D.H., Hartmann H., Dimick K.P., “Analysis of Sulfur Compounds with Electron Capture/Hydrogen Flame Dual Channel Gas Chromatography”, Anal. Chem. 36, 1560–1565 (1964).

    Article  CAS  Google Scholar 

  91. Williams I.H., “Gas Chromatographic Techniques for the Identification of Low Concentrations of Atmospheric Pollutants”, Anal.Chem. 37, 1723–1732 (1965).

    Article  CAS  Google Scholar 

  92. Camoni I., Gandolfo N., Ramelli G., Sampaolo A., Binetti L., “Rapid Screening Hethod for the Simultaneous Determination of Chlorinated and Phosphorus-containing Pesticide Residues in Fruits and Vegetables”, Boll.Lab.Chim.Prov. 18, 579–6612 (1967).

    CAS  Google Scholar 

  93. Wessel J.R., “Collaborative Study of Three Gas Chromatographic Dual Detection Systems for Analysis of Multiple Chlorinated and Organophosphorus Pesticides”, J.Assoc.Off. Ana1.Chem. 51, 666–675 (1968).

    CAS  Google Scholar 

  94. Krejci H., Dressler H., “Selective Detectors in Gas Chromatography”, Chromatogr. Revs. 13, 1–59 (1970).

    Article  CAS  Google Scholar 

  95. Brandenberger H., “Gas Chromatography in Toxicological Analyses. Improvement of Selectivity and Sensitivity by Inserting Multiple Detectors”, Pharm.Acta Helv. 45, 394–413 (1970).

    CAS  Google Scholar 

  96. McLean W.R., Stanton D.L., Penketh G.E., “Quantitative Tunable Element- Selective Detector for Gas Chromatography”, Analyst (London) 98, 432–442 (1973).

    Article  CAS  Google Scholar 

  97. Neuner-Jehle N., Etzwei1er F., Zarske G., “P1atinkapi11aren a1s Interface bei der Direktkopp1ung von G1askapi11arsau1en mit einem Massenspektrometer”, Chromatographia 6, 211–216 (1973).

    Article  CAS  Google Scholar 

  98. Etzweiler F., Neuner-Jehle N., “Eine einfache Vorrichtung zur Stromteilung am Ausgang von Glaskapi11arsäu1en hoher Trennleistung”, Chromatographia 6, 503–507 (1973).

    Article  CAS  Google Scholar 

  99. Bertsch W., Shunbo F., Chang R.C., Zlatkis A., “Preparation of High Resolution Nickel Open Tubular Columns”, Chromatographia 7, 128–134 (1974).

    Article  CAS  Google Scholar 

  100. Neuner-Jehle N., Etzweiler F., Zarsche G., “Zur Frage der Chromatogramm- Registrierung bei der Direktkopplung von Kapillarsäulen mit einem Massenspektrometer. Der Anschluss eines FID parallel zum Massenspektrometer”, Chromatographia 7, 323–332 (1974).

    Article  CAS  Google Scholar 

  101. McLeod H.A., Butterfield A.G., Lewis D., Phillips W.E.J., Coffin D.E., “Gas-Liquid Chromatography System with Flame Ionization, Phosphorus, Sulfur, Nitrogen and Electron Capture Detectors Operating Simultaneously for Pesticide Residue Analysis”, Anal.Chem. 47, 674–679 (1975).

    Article  CAS  Google Scholar 

  102. McLeod H.A., Coffin D.E., “Pesticide Residue Screening Methods Utilizing Multidedector Configurations”, Water Quality Parameter, ASTM STP 573, American Society for Testing and Materials, Philadelphia, 1975, pp. 183–195.

    Google Scholar 

  103. McConnel M. L., Novotny M., “Automated High-Resolution Gas Chromatogra phic System for Recording and Evaluation of Metabolic Profiles”, J.Chromatogr. 112, 559–571 (1975).

    Article  CAS  Google Scholar 

  104. Verga G.R., Poy F., “Gas Chromatography of Nitrogen- and Phosphorus- Containing Compounds. A New, High Sensitivity, Variable Selectivity Detector”, J. Chromatogr. 116, 17–27 (1976).

    Article  CAS  Google Scholar 

  105. Bertsch W., Hsu F., Zlatkis A., “Hearth Cutting Technique in High Resolution Gas Chromatography Applied to Sulfur Compounds in Cigarette Smoke”, Anal.Chem. 48, 928–931 (1976).

    Article  CAS  Google Scholar 

  106. Hrivnac M., Frischknecht W., Cechova L., “Gas Chromatographic Multidetector Coupled to a Glass Capillary Column”, Anal.Chem. 48, 937–940 (1976).

    Article  CAS  Google Scholar 

  107. Bruner F., Ciccioli P., Bertoni G., “Analysis of Sulfur Compounds in Environmental Samples with Specific Detection and Selective Columns”, J. Chromatogr. 120, 200–202 (1976).

    Article  CAS  Google Scholar 

  108. Mellor N., “Thermionic Detectors in Gas Chromatography. Selective Detection of Phosphorus, Nitrogen and Sulphur Compounds”, J. Chromatogr. 123, 396–399 (1976).

    Article  CAS  Google Scholar 

  109. Sevcik J., Kaiser R.E., Rieder R., “A Semi-specific Flame-Ionization Detection System”, J.Chromatogr. 126, 263–269 (1976).

    Article  CAS  Google Scholar 

  110. Ciccioli P., Bertoni G., Brancaleoni E., Fratarcangeli R., Bruner F., “Evaluation of Organic Pollutants in the Open Air and Atmospheres in Industrial Sites Using Graphitized Carbon Black Traps and Gas Chromatographic-Mass Spectrometric Analysis with Specific Detectors”, J.Chromatogr. 126, 757–770 (1976).

    Article  CAS  Google Scholar 

  111. Giger W., Reinhard M., Schaffner C., Zürcher F., in Keith L. H. editor, Identification and Analysis of Organic Pollutants, Ann Arbor Science Publishers, Ann Arbor, 1976, pp. 433–452.

    Google Scholar 

  112. Bächmann K., Emig W., Rudolph J., Tsotsos D., “Die gleichzeitige Verwendung von FID und ECD im Anschluss an eine Kapillarsäule”, Chromatographia 10, 684–685 (1977).

    Article  Google Scholar 

  113. Adams R.F., Vandemark F.L., Schmidt G.J., “Ultramicro GC Determinaticn of Amino Acids Using Glass Open Tubular Columns and a Nitrogen- Selective Detector”, J.Chromatogr. Sci. 12, 63–68 (1977).

    Google Scholar 

  114. Baker J.K., “Identification and Chemical Classification of Drugs Based on the Relative Response of a Nitrogen Selective Detector and a Flame Ionization Detector in Gas Chromatographic Analysis”, Anal. Chern. 49, 906–908 (1977).

    Article  CAS  Google Scholar 

  115. Bertsch W., Anderson E., Holzer G., “Two Dimensional High Resolution GLC Environmental Analysis, Preliminary Results”, Chromatographia 10, 449–454 (1977).

    Article  CAS  Google Scholar 

  116. Södergren A., “Simultaneous Detection of Halogenated and Other Compounds by Electron-Capture and Flame-Ionization Detectors Combined in Series”, J. Chromatogr. 160, 271–276 (1978).

    Article  Google Scholar 

  117. Anderson E.L., Bertsch W., “Practical Aspects of Pt/Ir Effluent Splitters for Multidetector GC and Pneumatic Solute Switching”, HRC&CC 1, l3-l7 (1978).

    Article  Google Scholar 

  118. Albert D.K., “Determination of Nitrogen Compound Distribution in Petroleum by Gas Chromatography with a Thermionic Detector”, Anal.Chem. 50, 1822–1829 (1978).

    Article  CAS  Google Scholar 

  119. Bjorseth A., Eklund G., “Analysis of Polynuclear Aromatic Hydrocarcons by Glass Capillary Gas Chromatography Using Simultaneous Flam.e Ionization and Electron Capture Detection”, HRC&CC 2, 22–26 (1979).

    Article  CAS  Google Scholar 

  120. Frame G.M.II, Flanigan G.A., Carmody D.C., “Application of Gas Chromatography Using Nitrogen Selective Detection to Oil Spill Identification”, J.Chromatogr. 168, 365–376 (1979).

    Article  CAS  Google Scholar 

  121. Bates T.S., Carpenter R., “Determination of Organosulfur Compounds Extracted from Marine Sediments”, Anal.Chem. 51, 551–554 (1979).

    Article  CAS  Google Scholar 

  122. Poy F., “A New Approach to the Simultaneous Multi-Detection Technique with Electron Capture and Flame Ionization in Series”, HRC&CC 2, 243–245 (1979).

    Article  CAS  Google Scholar 

  123. Wenzel B., Aiken R.L., “Thiophenic Sulfur Distribution in Petroleum Fractions by Gas Chromatography with a Flame Photometric Detector”, J.Chromatogr.Sci. 17, 503–509 (1979).

    CAS  Google Scholar 

  124. Gross D., Gutekunst H., Blaser A., Hambock H., “Peak Identification in Capillary Gas Chromatography by Simultaneous Flame Ionization Detection and l4C-Detection”, J.Chromatogr. 198, 389–396 (1980).

    Article  CAS  Google Scholar 

  125. Lopez-Avila V., “Analysis of Sludge Extracts by High Resolution GC with Selective Detectors”, HRC&CC 3, 545–550 (1980).

    Article  CAS  Google Scholar 

  126. Becher G., “Glass Capillary Columns in the Gas Chromatographic Separation of Aromatic Amines. II Application to Sample from Workplace Atmospheres Using Nitrogen-Selective Detection”, J. Chromatogr. 211, 103–110 (1981).

    Article  CAS  Google Scholar 

  127. McCarthy L.V., Overton E.B., Maberry M.A., Antoine S.A., Laseter J.L., “Glass Capillary Gas Chromatography with Simultaneous Flame Ionization (FID) and Hall Element-Specific (HECD) Detection”, HRC&CC 4, 164–168 (1981).

    Article  CAS  Google Scholar 

  128. Bjorseth A., Carlberg G.E., Gjos N., Moller M., Tveten G., in L.H. Keith editor, “Advances in the Identification and Analysis of Organic Pollutants in Water”, Ann Arbor Science Publishers, Ann Arbor, 1981.

    Google Scholar 

  129. Marriot P.J., Cardwell T.J., “Chromatographic Parameters Derived from the Non-linear Response of a Flame Photometric Detector”, Chromatographia 14, 279–284 (1981).

    Article  Google Scholar 

  130. Gagliardi P., Verga G.R., Munari F., “A High Resolution Head Space Gas Chromatographic System with Multi-Detector Capabilities”, Carlo Erba Application Sheets (1981).

    Google Scholar 

  131. Drozd J., “Chemical Derivatization in Gas Chromatography”, Chromatogr. Revs. 19, 303–356 (1975).

    Article  Google Scholar 

  132. Poole C.F., Zlatkis A., “Derivatization Techniques for the Eletron-Capture Detector”, Anal. Chem. 52, 1002A-1016A (1980).

    Article  CAS  Google Scholar 

  133. Knapp D.R., “Handbook of Analytical Derivatization Reaction”, J.Wiley & Sons, New York, 1979.

    Google Scholar 

  134. Blau K., King G. editors, “Handbook of Derivatives for Chromatography”, Heyden & Son, London, 1980.

    Google Scholar 

  135. Hartvig P., Ahnfelt N.-O., Hammarlund M., Vessman J., “Analysis of Nicotine as a Trichloroethyl Carbamate by Gas Chromatography with Electron-Capture Detection”, J.Chromatogr. 173, 127–138 (1979).

    Article  CAS  Google Scholar 

  136. Yamaguchi T., Yoshikawa S., Sekine Y., Hashimoto M., “Determination of (E)-(2,3-dichloro-4-methoxyphenyl)-2-furanylmethanone-0-(2-diethylaminoethyl)oxime Methanesulphonate (ANP-4364) in Plasma Using Gas Chromatography with Electron-Capture Detection”, J.Chromatogr. 173, 147–154 (1979).

    Article  CAS  Google Scholar 

  137. Doshi P.S., Edwards D.J., “Use of 2,6-dinitro-4-trifluoromethylbenzenesulphonic Acid as a Novel Derivatizing Reagent for the Analysis of Catecholamines, Histamines and Related Amines by Gas Chromatography with Electron-Capture Detection”, J.Chromatogr. 176, 359–366 (1979).

    Article  CAS  Google Scholar 

  138. Hoshika Y., Muto G., “Sensitive Gas Chromatographic Determination of Phenols as Bromophenols Using Electron-Capture Detection”, J.Chromatogr. 179, 105–111 (1979).

    Article  CAS  Google Scholar 

  139. Tanaka A., Nose N., Yamada F., Saito S., Watanabe A., “Determination of Nitrite in Human, Cow and Market Milks by Gas-Liquid Chromatography with Electron-Capture Detection”, J.Chromatogr. 206, 531–540 (1981).

    Article  CAS  Google Scholar 

  140. Farwell S.O., Gage D.R., Kagel R.A., “Current Status of Prominent Selective Gas Chromatographic Detectors: A Critical Assessment”, J.Chromatogr.Sci. 19, 358–376 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 ECSC, EEC, EAEC, Brussels and Luxembourg

About this paper

Cite this paper

Mantica, E. (1982). Recent Developments of Selective Detectors in GC. In: Bjørseth, A., Angeletti, G. (eds) Analysis of Organic Micropollutants in Water. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7804-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7804-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7806-5

  • Online ISBN: 978-94-009-7804-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics