Skip to main content
Book cover

Ordered Sets pp 213–236Cite as

Linear Extensions of Partial Orders and the FKG Inequality

  • Conference paper

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 83))

Abstract

Many algorithms for sorting n numbers {a 1,a 2,…,a n } proceed by using binary comparisons a i : a j to construct successively stronger partial orders P on {a i } until a linear order emerges (e.g., see Knuth [Kn]). A fundamental quantity in deciding the expected efficiency of such algorithms is Pr(a i < a j P), the probability that the result of a i :a j is a i < a j when all linear orders consistent with P are equally likely. In this talk we discuss various intuitive but nontrivial properties of Pr(a i < a j P) and related quantities. The only known proofs of some of these results require the use of the so-called FKG inequality [FKG, SW]. We will describe this powerful result and show how it is used in problems like this.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ahlswede and D. E. Daykin, Inequalities for a pair of maps S x S → S with S a finite set, Math. Zeit., 165 (1979), 267–289.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Ahlswede, An inequality for the weights of two families of sets, their unions and intersections, Z. Wahrscheinlichkeitstheorie verw. Gebeite, 43 (1978), 183–185.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Busemann, Convex Surfaces, Interscience, New York, 1958.

    MATH  Google Scholar 

  4. F. R. K. Chung, P. C. Fishburn and R. L. Graham, On unimodality for linear extensions of partial orders, SIAM Jour. Alg. Disc. Metk., 1 (1980), 405–410.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. E. Daykin, A lattice is distributive iff (**math type**), Nanta Math., 10 (1977), 58–60.

    MathSciNet  MATH  Google Scholar 

  6. G. P. Egoritsjev, Solution of van der Waerden’s permanent conjecture, (preprint) 13M of the Kirenski Inst. of Physics, Krasnojarsk (1980), (Russian).

    Google Scholar 

  7. W. Fenchel, Inégalités quadratique entre les volumes mixtes des corps convexes, C. R. Acad. Sci., Paris, 203 (1936), 647–650.

    Google Scholar 

  8. P. C. Fishburn, On the family of linear extensions of a partial order, J. Combinatorial Th. (B), 17 (1974), 240–243.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. C. Fishburn, On linear extension majority graphs of partial orders, J. Combinatorial Th. (B), 21 (1976), 65–70.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. M. Fortuin, P.W. Kasteleyn and J. Ginibre, Correlation inequalities on some partially ordered sets, Comm. Math. Phys., 22 (1971), 89–103.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. L. Graham, A. C. Yao, F. F. Yao, Some monotonicity properties of partial orders, SIAM Jour. Alg. Disc. Meth., 1 (1980), 251–258.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. B. Griffiths, Correlations in Ising ferromagnets. J. Math. Phys., 8 (1967), 478–483.

    Article  Google Scholar 

  13. T. E. Harris, A lower bound for the critical probability in a certain percolation process, Proc. Camb. Phil. Soc., 56 (1960), 13–20.

    Article  MATH  Google Scholar 

  14. R. Holley, Remarks on the FKG inequalities, Comm. Math. Phys., 36 (1974), 227 - 231.

    Article  MathSciNet  Google Scholar 

  15. D. J. Kleitman, Families of non-disjoint sets, J. Combinatorial Th., 1 (1966), 153–155.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. J. Kleitman, Extremal hypergraph problems, Surveys in Combinatorics, B. Bollobás, Ed., London Math. Soc., Lecture Note Series 38, Cambridge Univ. Press, (1979), pp. 44–65.

    Google Scholar 

  17. D. J. Kleitman and J. B. Shearer, A monotonicity property of partial orders (to appear).

    Google Scholar 

  18. D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching,Addison-Wesley, Reading, Mass., 1973.

    Google Scholar 

  19. J. Marica and J, Schönheim, Differences of sets and a problem of Graham, Canad. Math. Bull., 12 (1969), 635–637.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Rivest (personal communication).

    Google Scholar 

  21. P. D. Seymour, On incomparable collections of sets, Mathematika, 20 (1973), 208–209.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. D. Seymour and D. J. A. Welsh, Combinatorial applications of an inequality from statistical mechanics, Math. Proc. Camb. Phil. Soc., 11 (1975), 485–495.

    Article  MathSciNet  Google Scholar 

  23. L. A. Shepp, The FKG inequality and some monotonicity properties of partial orders, SIAM Jour. Alg. Disc. Meth., 1 (1980), 295–299.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. P. Stanley, Comments to solution of problem S20, Amer. Math. Monthly, 88 (1981), p. 208.

    Article  MathSciNet  Google Scholar 

  25. R. P. Stanley, Two combinatorial applications of the Aleksandrov-Fenchel inequalities, (to appear).

    Google Scholar 

  26. J. H. van Lint, Notes on Egoritsjev’s proof of the van der Waerden conjecture, Eindhoven Univ. of Tech., Math. Dept. Memorandum 1981–01 (11 pp.).

    Google Scholar 

  27. D. E. Daykin, Inequalities among the subsets of a set, Nanta Math., 12 (1980), 137–145.

    MathSciNet  Google Scholar 

  28. D. E. Daykin, A hierarchy of inequalities, Studies in Appl. Math., 63 (1980), 263–274.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

Graham, R.L. (1982). Linear Extensions of Partial Orders and the FKG Inequality. In: Rival, I. (eds) Ordered Sets. NATO Advanced Study Institutes Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7798-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7798-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7800-3

  • Online ISBN: 978-94-009-7798-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics