Skip to main content

Exponentiation and Duality

  • Conference paper
Ordered Sets

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 83))

Abstract

In a unified treatment of cardinal and ordinal arithmetic G. Birkhoff [18], [20] defined (cardinal) exponentiation of ordered sets: for ordered sets X and Y, X Y (the power) is the set of all order-preserving maps of Y (the exponent) to X (the base) ordered componentwise. Our aim. is to review a significant body of results concerning powers of ordered sets and to present some central open problems arising in recent work. Roughly, we have two topics: first, an analysis of the structure of powers and their symmetries; second, a study of duality results for lattice-ordered algebras.

Birkhoff [18] observed that exponentiation of ordered sets satisfies the usual laws for exponents and raised questions concerning cancellation laws for bases and exponents [20]: Does either X YX Z or Y XZ X imply YZ? Early results appear in M. Novotný [59] and E. Fuchs [40]• A logarithmic property is used by D. Duffus and I. Rival [37] to obtain cancellation of bases for finite ordered sets. Using extensions of this method and the relation between symmetries of X Y and both product and exponential decompositions of X Y, B. Jónsson and R. McKenzie [52] obtained many cancellation and refinement theorems. For instance, under conditions on ordered sets A, B, C, D (too varied and technical to state here) they show that A CB C implies AB, and that A CB D yields E, X, Y, Z and isomorphisms AE X, BE Y, CY·Z, DX·Z. (See [16], [36], [39], [87] for related results.)

It remains to be seen if, in the finite case, cancellation of exponents is always possible. Other open problems concern simplification of conditions insuring refinement properties and unification of existing results (cf. [52]).

Concerning symmetries of powers, it is easy to see that for ordered sets X and Y, Aut(X) × Aut(Y) is embeddable in Auti(X Y). In [52] two questions are raised: under what conditions is the embedding full, and, if not full, can Aut (X Y) still be described in terms of Aut(X) and Aut(Y)? Jónsson and McKenzie [52] obtained some results: Aut(X Y) ≅ Aut(X) × Aut(Y) if X is a subdirectly irreducible lattice and Y is finite and connected. Duffus and Wille [38] provided answers to both questions when X is a lattice of finite length. Most recently, Jónsson [51], building on techniques of [52], has obtained much stronger results.

Birkhoff [19] proved that every finite distributive lattice D is isomorphic to \( {{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{2}}}^{{J{{{(D)}}^{d}}}}}where {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{2}} \) is the two-element chain and J(D)d is the dual of the ordered subset of join-irreducible elements of D. Implicit in this is the fact that the category \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{D} _F}\) of finite bounded distributive lattices is dually equivalent to the category \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{P} _F}\) of finite ordered sets. This duality was extended to infinite bounded distributive lattices by H.A. Priestley [61], [62]: the category \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{D} \) of all bounded distributive lattices is dually equivalent to the category \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{P} \) of all compact Hausdorff ordered spaces which are embeddable in a power of \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{2} \).

Further extension of this duality is possible. A finite lattice L is order-polynomial-complete if for every positive integer n, every order-preserving map of L n to L is an n-ary polynomial (alias, algebraic) function [70], [86], [87]. For instance, Wille [85] showed that every finite simple lattice whose greatest element is the join of atoms is order-polynomial-complete. A proof of Priestley’s duality result utilizing the order-polynomial-completeness of \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{2} \) is given in B.A. Davey [28]. The implicit possibility that a similar duality holds for each order-polynomial-complete lattice was exploited in B.A. Davey, D. Duffus, R.W. Quackenbush and I. Rival [30J and further refined in B.A. Davey and I. Rival [32].

The dual equivalence of \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{D} \) (respectively, \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{D} _F}\)) and \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{P} \) (respectively, \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{P} _F}\)) allows representation of both the objects and the morphisms of D in terms of those of \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{P} \). Moreover the objects and morphisms of \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{P} \), especially of \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{P} _F}\), are so pictorial that this duality is a very powerful tool for the study of particular bounded distributive lattices and the class they comprise, and for generating examples and counterexamples. Further, this duality reveals interplay between ordered sets and distributive-lattice-ordered algebras — algebraic structures often arising in logic such as Boolean algebras, Heyting algebras, and pseudo-complemented distributive lattices. Provided that one can describe those ordered spaces in \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{P} \) which arise as duals of these enriched structures and the continuous order-preserving maps in \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{P} \) which are dual to their homomorphisms, the Birkhoff-Priestley result immediately yields a duality for the class of enriched structures. In this setting, natural algebraic questions can lead to order-theoretic considerations which are interesting in their own right. (B.A. Davey [28] and B.A. Davey and H. Werner [33] provide a general approach to duality theory.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M.E. Adams, The Frattini sublattice of a distributive lattice, Algebra Univ. 3 (1973), 216–228.

    Article  MATH  Google Scholar 

  2. M.E. Adams, A problem of A. Monteiro concerning relative complementation of lattices, Coll. Math. 30 (1974), 61–67.

    MATH  Google Scholar 

  3. M.E. Adams, The poset of prime ideals of a distributive lattice, Algebra Univ. 5 (1975), 141–142.

    Article  MATH  Google Scholar 

  4. M.E. Adams, Implicational classes of pseudocomplemented distributive lattices, J. London Math. Soc. (2) 13 (1976), 381–384.

    Article  MathSciNet  MATH  Google Scholar 

  5. M.E. Adams and D. Kelly, Homomorphic images of free distributive lattices that are not sublattices, Algebra Univ. 5 (1975), 143–144.

    Article  MathSciNet  MATH  Google Scholar 

  6. M.E. Adams and J. Sichler, Endomorphism monoids of distributive double p-algebras, Glasgow Math. J. 20 (1979), 81–86.

    Article  MathSciNet  MATH  Google Scholar 

  7. K.A. Baker and A.F. Pixley, Polynomial interpolation and the Chinese remainder theorem for algebraic systems, Math. Z. 143 (1975), 165–174.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Balbes, Projective and injective distributive lattices, Pacific J. Math. 21 (1967), 405–420.

    MathSciNet  MATH  Google Scholar 

  9. R. Balbes, On the partially ordered set of prime ideals of a distributive lattice, Canad. J. Math. 23 (1971), 866–874.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Balbes, Solution of a problem concerning the intersection of maximal filters and maximal ideals in a distributive lattice, Algebra Univ. 2 (1972), 389–392.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Missouri (1974).

    MATH  Google Scholar 

  12. R. Balbes and A. Horn, Projective distributive lattices, Pacific J. Math. 33 (1970), 273–279.

    MathSciNet  MATH  Google Scholar 

  13. R. Balbes and A. Horn, Stone lattices, Düke Math. J. 37 (1970), 537–546.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Banaschewski, Hüllensysteme und Erweiterungen von Ouasi-Ordnungen, Z. Math. Logik Grundlagen Math. 2 (1956), 117–130.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Banaschewski and G. Bruns, Categorical characterization of the Dedekind-MacNeille completion, Arch. Math. 18 (1967), 369–377.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Bergman, R. McKenzie, and S. Nagý, How to cancel a linearly ordered exponent, preprint (1979).

    Google Scholar 

  17. G. Birkhoff, On the combination of subalgebras, Proc. Comb. Phil. Soc. 29 (1933), 441–464.

    Article  Google Scholar 

  18. G. Birkhoff, Extended arithmetic, Duke Math. J. 3 (1937), 311–316.

    Article  MathSciNet  Google Scholar 

  19. G. Birkhoff, Rings of sets, Duke Math. J. 3 (1937), 443–454.

    Article  MathSciNet  Google Scholar 

  20. G. Birkhoff, Generalized arithmetic, Duke Math. J. 9 (1942), 283–302.

    Article  MathSciNet  Google Scholar 

  21. G. Birkhoff, Lattice Theory, American Mathematical Society, Providence, Rhode Island (1967).

    MATH  Google Scholar 

  22. W.H. Cornish, On H. Priestley’s dual of the category of bounded distributive lattices, Mat. Vesnik 12 (27) (1975), 329–332.

    MathSciNet  Google Scholar 

  23. W.H. Cornish, Ordered topological spaces and the coproduct of bounded distributive lattices, Coll. Math. 36 (1976), 27–35.

    MathSciNet  MATH  Google Scholar 

  24. W.H. Cornish and P.R. Fowler, Coproducts of de Morgan algebras, Bull. Austral. Math. Soc. 16 (1977), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  25. W.H. Cornish and P.R. Fowler, Coproducts of Kleene algebras, J. Austral. Math. 27 (1979), 209–220.

    Article  MathSciNet  Google Scholar 

  26. B.A. Davey, A note on representable posets, Algebra Univ. 3 (1973), 345–347.

    Article  MathSciNet  MATH  Google Scholar 

  27. B.A. Davey, Free products of bounded distributive lattices, Algebra Univ. 4 (1974), 106–107.

    Article  MathSciNet  MATH  Google Scholar 

  28. B.A. Davey, Topological duality for prevarieties of universal algebras, in G.-C. Rota, ed., Studies in Foundations and Combinatorics, Advances in Mathematics Supplementary Studies, Volume 1, Academic Press (1978), 61–99.

    Google Scholar 

  29. B.A. Davey, Subdirectly irreducible distributive double p-algebras, Algebra Univ. 8 (1978), 73–88.

    Article  MathSciNet  MATH  Google Scholar 

  30. B.A. Davey, D. Duffus, R.W. Quackenbush, and I. Rival, Exponents of finite simple lattices, J. London Math. Soc. (2) 17 (1978), 203–211.

    Article  MathSciNet  MATH  Google Scholar 

  31. B.A. Davey and M.S. Goldberg, The free p-algebra generated by a distributive lattice, Algebra Univ. 11 (1980), 90–100.

    Article  MathSciNet  MATH  Google Scholar 

  32. B.A. Davey and I. Rival, Exponents of lattice-ordered algebras, Algebra Univ. (to appear).

    Google Scholar 

  33. B.A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, Coll. Math. Soc. János Bolyai (to appear).

    Google Scholar 

  34. R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. Math. 51 (1950), 161–166.

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Duffus, Toward a Theory of Finite Partially Ordered Sets, PhD thesis, University of Calgary, Calgary, Alberta (1978).

    Google Scholar 

  36. D. Duffus, B. Jónsson, and I. Rival, Structure results for function lattices, Canad, J. Math. 30 (1978), 392–400.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Duffus and I. Rival, A logarithmic property for exponents of partially ordered sets, Canad. J. Math. 30 (1978), 797–807.

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Duffus and R. Wille, Automorphism groups of function lattices, Proceedings of a Meeting on Universal Algebra, Estergom (1978).

    Google Scholar 

  39. D. Duffus and R. Wille, A theorem on partially ordered sets of order-preserving mappings, Proc. Amer. Math. Soc. 76 (1979), 14–16.

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Fuchs, Isomorphismus der Kardinalpotenzen, Arch. Math. (Brno) 1 (1965), 83–93.

    MathSciNet  MATH  Google Scholar 

  41. L. Geissinger and W. Graves, The category of complete algebraic lattices, J. Comb. Theory 13 (1972), 332–338.

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Gierz and K. Keimel, Topologische Darstellung von Verbänden, Math. Z. 150 (1976), 83–99.

    Article  MathSciNet  MATH  Google Scholar 

  43. L.M. Gluskin, Semigroups of isotone transformations, Uspehi Mat. Nauk 16 (1961), 157–162.

    MathSciNet  MATH  Google Scholar 

  44. M.S. Goldberg, Distributive p-Algebras and Ockham Algebras: a Topological Approach, PhD thesis, La Trobe University, Bundoora, Australia (1979).

    Google Scholar 

  45. M.S. Goldberg, Distributive Ockham algebras: free algebras and injectivity, Bull. Austral. Math. Soc. 24 (1981), 161–203.

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Hashimoto, On direct product decompositions of partially ordered sets, Ann. of Math. (2) 54 (1951), 315–318.

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Hecht and T. Katriňák, Free double-Stone algebras, in Lattice Theory, Coll. Math. Soc. János Bolyai 14 (1974), pp. 77–95.

    Google Scholar 

  48. K.H. Hofmann, M. Mislove, and A. Stralka, The Pontryagin Duality of Compact 0-Dimensional Semilattices and Its Applications, Lect. Notes in Math. 396, Springer, Berlin-Heidelberg-New York (1974).

    Google Scholar 

  49. B. Jónsson, Algebras whose congruences are distributive, Math. Scand. 21 (1967), 110–121.

    MathSciNet  MATH  Google Scholar 

  50. B. Jónsson, The arithmetic of ordered sets, this volume, 3–41.

    Google Scholar 

  51. B. Jónsson, Powers of partially ordered sets: the automorphism group, preprint (1980).

    Google Scholar 

  52. B. Jónsson and R. McKenzie, Powers of partially ordered sets : cancellation and refinement properties, Math. Scand. (to appear).

    Google Scholar 

  53. M. Kamara and D. Schweigert, Eine Charakterisierung polynomvollständiger Polaritätsverbände, Arch. Math. 30 (1978), 661–664.

    Article  MathSciNet  MATH  Google Scholar 

  54. T. Katriňák, The free {0,l}-distributive product of distributive p-algebras, Bull. Soc. Roy. Sci. Liège 47 (1978), 323–328.

    MATH  Google Scholar 

  55. H. Lakser, The structure of pseudocomplernented distributive lattices. I. Subdirect decomposition, Trans. Amer. Math. Soc. 156 (1971), 334–342.

    Google Scholar 

  56. K.B. Lee, Equational classes of distributive pseudocomplemented lattices, Canad. J. Math. 22 (1970), 881–891.

    Article  MathSciNet  MATH  Google Scholar 

  57. L. Lovasz, Operations with structures, Acta Math. Aoad. Sci. Hungar. 18 (1967), 321–328.

    Article  MathSciNet  MATH  Google Scholar 

  58. H.M. MacNeille, Partially ordered sets, Trans. Amer. Math. Soc. 42 (1937), 416–460.

    Article  MathSciNet  Google Scholar 

  59. M. Novotný, Über gewisse Eigenschaften von Kardinal Operationen, Spisy Prirod Fac. Univ. Brno (1960), 465–484.

    Google Scholar 

  60. R. Nowakowski and I. Rival, Distributive cover-preserving sublattices of modular lattices, Nanta Math. 11 (1979), 110–123.

    MathSciNet  Google Scholar 

  61. H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186–190.

    Article  MathSciNet  MATH  Google Scholar 

  62. H.A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. (3) 24 (1972), 507–530.

    Article  MathSciNet  MATH  Google Scholar 

  63. H.A. Priestley, Stone lattices: a topological approach, Fund. Math. 84 (1974), 127–143.

    MathSciNet  MATH  Google Scholar 

  64. H.A. Priestley, The construction of spaces dual to pseudocomplemented distributive lattices, Quart. J. Math. Oxford Ser.(2) 26 (1975), 215–228.

    Article  MathSciNet  MATH  Google Scholar 

  65. I. Rival and B. Sands, Weak embeddings and embeddings of finite distributive lattices, Archiv. Math. 26 (1975), 346–352.

    Article  MathSciNet  MATH  Google Scholar 

  66. G. Sabidussi, Graph multiplication, Math. Z. 72 (1960), 446–457.

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Schmid, Tensor products of distributive lattices and their Priestley duals, Acta Math. Acad. Sci. Hungar. 35 (1980), 387–392.

    Article  MathSciNet  MATH  Google Scholar 

  68. E.T. Schmidt, Remark on generalized function lattices, Acta Math. Acad. Sci. Hungar. 34 (1979), 337–339.

    Article  MathSciNet  MATH  Google Scholar 

  69. J. Schmidt, Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Menge, Arch. Math. 7 (1956), 241–249.

    Article  MATH  Google Scholar 

  70. D. Schweigert, Über endliche, ordnungspolynomvollständiger Verbände, Monatsch. Math. 78 (1974), 68–76.

    Article  MathSciNet  MATH  Google Scholar 

  71. D. Schweigert, Affine complete ortholattices, Proc. Amer. Math. Soc. 67 (1977), 198–200.

    Article  MathSciNet  Google Scholar 

  72. T.P. Speed, Profinite posets, Bull. Austral. Math. Soc. 6 (1972), 177–183.

    Article  MathSciNet  MATH  Google Scholar 

  73. T.P. Speed, On the order of primes, Algebra Univ. 2 (1972), 85–87.

    Article  MathSciNet  MATH  Google Scholar 

  74. M.H. Stone, The theory of representations of Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), 37–111.

    MathSciNet  Google Scholar 

  75. M.H. Stone, Topological representation of distributive lattices and Brouwerian logics, Casopis Pest. Mat. Fys. 67 (1937), 1–25.

    Google Scholar 

  76. M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375–481.

    Article  MathSciNet  Google Scholar 

  77. A. Urquhart, Free distributive pseudo-complemented lattices, Algebra Univ. 3 (1973), 13–15.

    Article  MathSciNet  MATH  Google Scholar 

  78. A. Urquhart, Finite free products of pseudocomplemented distributive lattices (unpublished manuscript, 1973 ).

    Google Scholar 

  79. A. Urquhart, A topological representation theory for lattices, Algebra Univ. 8 (1978), 45–58.

    Article  MathSciNet  MATH  Google Scholar 

  80. A. Urquhart, Distributive lattices with a dual homomorphic operation, Studia Logica 38 (1979), 201–209.

    Article  MathSciNet  MATH  Google Scholar 

  81. A. Urquhart, Projective distributive p-algebras, Bull. Austral. Math. Soc. 24 (1981), 269–275.

    Article  MathSciNet  MATH  Google Scholar 

  82. A. Urquhart, Equational classes of distributive double p-algebras, Algebra Univ. (to appear).

    Google Scholar 

  83. R. Wille, Note on the order dimension of partially ordered sets, Algebra Univ. 5 (1975), 443–444.

    Article  MathSciNet  MATH  Google Scholar 

  84. R. Wille, Subdirekte Produkte vollständiger Verbände, J. Reine Angew. Math. 283 /284 (1976), 53–70.

    Article  MathSciNet  Google Scholar 

  85. R. Wille, Eine Charakterisierung endlicher ordnungspolynomvollständiger Verbände, Arch. Math. (Basel) 28 (1977), 557–560.

    MathSciNet  MATH  Google Scholar 

  86. R. Wille, A note on algebraic operations and algebraic functions on finite lattices, Houston J. Math. 3 (1977), 593–597.

    MathSciNet  MATH  Google Scholar 

  87. R. Wille, Cancellation and refinement properties for function lattices, Houston J. Math. 6 (1980), 431–437.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

Davey, B.A., Duffus, D. (1982). Exponentiation and Duality. In: Rival, I. (eds) Ordered Sets. NATO Advanced Study Institutes Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7798-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7798-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7800-3

  • Online ISBN: 978-94-009-7798-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics