Skip to main content
Book cover

Ordered Sets pp 555–581Cite as

The Möbius Function of a Partially Ordered Set

  • Conference paper

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 83))

Abstract

The history of the Möbius function has many threads, involving aspects of number theory, algebra, geometry, topology, and combinatorics. The subject received considerable focus from Rota’s by now classic paper in which the Möbius function of a partially ordered set emerged in clear view as an important object of study. On the one hand, it can be viewed as an enumerative tool, defined implicitly by the relations

$$f(x) = \sum\limits_{yx} {g(y)} {\text{ and }}g(x) = \sum\limits_{yx} {\mu (y,x)f(y)} $$

where f and g are arbitrary functions on a poset P. On the other hand, one can study μ for its own sake as a combinatorial invariant giving important and useful information about the structure of P.

These expository lectures will trace this historical development and recent progress in the theory from both of these points of view. Topics to receive special attention are these:

  1. (i)

    the Möbius function as a geometric invariant, for geometric lattices and other ordered structures associated with geometries;

  2. (ii)

    algebraic and homological methods;

  3. (iii)

    a catalog of interesting families of partially ordered sets for which the Möbius function is known.

This paper is a brief expository account of some basic results in the theory of Möbius functions on partially ordered sets. It is not a survey, and no attempt will be made to be complete. What this paper represents is a summary, with complete proofs, of the basic results upon which the subject rests. For the most part, these are taken from Rotafs pivotal paper, “On the foundations of combinatorial theory I: The theory of Möbius functions” [Ro1], and from several papers of Crapo ([Crl], [Cr2]), in which Rota’s work was extended significantly. We have endeavored to refine and condense the proofs as much as possible, although this has also led us to abandon interesting (but less efficient) lines of development. For the reader interested in learning more, there is a substantial bibliography including many recent papers of considerable importance.

If there is a “modern era” of the Möbius function, it begins in 1964 with Rota’s paper [Rol]. One could argue, of course, that the story begins earlier: the Möbius function of elementary number theory has a rich and varied history stretching back to the last century. The inclusion-exclusion principle has its roots in combinatorial antiquity. Significant steps were taken before 1964 (e.g. by Weisner, P. Hall, Dilworth, and others) toward developing and using a theory of Möbius inversion on arbitrary partially ordered sets. However Rota’s paper marks the time at which the Möbius function emerged in clear view as a fundamental invariant, which unifies both enumerative and structural aspects of the theory of partially ordered sets. The title of [Rol] is a startling prophesy, fulfilled to a great extent by the paper itself, and also by many lines of research which continue to this day.

We hope this paper will help whet the appetite of those not yet fully acquainted with this interesting and important subject.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aigner (1980) Combinatorial Theory, Springer-Verlag (Berlin-Heidelberg, New York).

    Google Scholar 

  2. K. Baclawski (1975) Whitney numbers of geometric lattices, Advances in Math. 16, 125–138.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Baclawski (1977) Galois connections and the Leray spectral sequence, Advances in Math. 25, 191–215.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Baclawski (1979) The Möbius algebra as a Grothendieck ring, J. Algebra 57, 167–179.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Baclawski (1980) Cohen-Macaulay ordered sets, J. Algebra 63, 226–258.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Baclawski (1981) Cohen-Macaulay connectivity and geometric lattices, preprint.

    Google Scholar 

  7. K. Baclawski and A. Björner (1979) Fixed points in partially ordered sets, Advances in Math. 31, 263–287.

    Article  MATH  Google Scholar 

  8. K. Baclawski and A. Björner (to appear) Fixed points and complements in finite lattices, J. Combinatorial Theory (A).

    Google Scholar 

  9. G. Birkhoff (1967) Lattice Theory, 3rd edition. Amer. Math. Soc. Colloq. Publ. 25, Providence.

    Google Scholar 

  10. A. Björner (1979) On the homology of geometric lattices, preprint.

    Google Scholar 

  11. A. Björner (1980) Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260, 159–183.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Björner (1981) Homotopy type of posets and lattice complementation, J. Combinatorial Theory (A) 30, 90–100.

    Article  MATH  Google Scholar 

  13. A. Björner, A. Garsia, R. Stanley (1982) An introduction to Cohen-Macaulay partially ordered sets, in: Symp. Ordered Sets (I. Rival, ed) Reidel, Dordrecht-Boston, 583–615.

    Google Scholar 

  14. A. Björner and J. Walker (1981) A homotopy complementation formula for partially ordered sets, preprint.

    Google Scholar 

  15. E. Bender and J. Goldman (1975) On applications of Möbius inversion in combinatorial analysis, Amer. Math. Monthly 82, 789–803.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Brylawski (1972) A decomposition for combinatorial geometries, Trans. Amer. Math. Soc. 171, 235–282.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Cartier and D. Foata (1969) Problèmes combinatoires de commutation et rearrangements, Springer Lecture Notes No. 85, Springer-Verlag, New York/Berlin,

    Google Scholar 

  18. M. Content, F. Lemay, and P. Leroux (1980) Catégories de Möbius et fonctorialités: un cadre général pour l’inversion de Möbius, J. Combinatorial Theory (A) 28, 169–190.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Crapo (1966) The Möbius function of a lattice, J. Combinatorial Theory 1, 126–131.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Crapo (1968) Möbius inversion in lattices, Arch. Math. 19, 595–607.

    Article  MathSciNet  Google Scholar 

  21. R.L. Davis (1970) Order algebras, Bull. Amer. Math. Soc. 76, 83–87.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Dilworth (1954) Proof of a conjecture on finite modular lattices, Annals of Math. II 60, 359–364.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Doubilet (1972) On the foundations of combinatorial theory VII: Symmetric functions through the theory of distribution and occupancy, Studies in Applied Math. 51, 377–395.

    MathSciNet  MATH  Google Scholar 

  24. P. Doubilet, G.-C. Rota, and R. Stanley (1972) On the foundations of combinatorial theory VI: The idea of generating function, Proc. Sixth Berkeley Symposium on Mathematical Statistics and Probability, 267–318.

    Google Scholar 

  25. T. Dowling (1973) A class of geometric lattices based on finite groups, J. Combinatorial Theory 14, 61–86.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Dowling (1977) Complementing permutations in finite lattices, J. Combinatorial Theory (B) 23, 223–226.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Dowling and R. Wilson (1974) The slimmest geometric lattices, Trans. Amer. Math. Soc. 196, 203–215.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Dowling and R. Wilson (1975) Whitney number inequalities for geometric lattices, Proc. Amer. Math. Soc. 47, 504–512.

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Farmer (1979) Cellular homology for posets, Math. Japonica 23, 607–613.

    MathSciNet  MATH  Google Scholar 

  30. J. Folkman (1966) The homology groups of a lattice, J. Math. Mech. 15, 631–636.

    MathSciNet  MATH  Google Scholar 

  31. L. Geissinger (1973) Valuations on distributive lattices I, II, Arch. Math. (Basel) 24, 230–239, 337–345.

    MathSciNet  Google Scholar 

  32. C. Greene (1970) A rank inequality for geometric lattices, J. Combinatorial Theory 2, 357–364.

    MathSciNet  Google Scholar 

  33. C. Greene (1973) On the Möbius algebra of a partially ordered set, Advances in Math. 10, 177–187.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Greene (1975) An inequality for the Möbius function of geometric lattices, Studies in Applied Math. 54, 71–74.

    MathSciNet  MATH  Google Scholar 

  35. C. Greene (1976) Weight enumeration and the geometry of linear codes, Studies in Applied Math. 55, 119–128.

    MathSciNet  MATH  Google Scholar 

  36. C. Greene (1977) Acyclic orientations, (lecture notes) in: Higher Combinatorics (M. Aigner, ed.) D. Reidel, Dordrecht, 66–68.

    Google Scholar 

  37. C. Greene and T. Zaslavsky (1980) On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, nonRadon partitions, and orientations of graphs, preprint.

    Google Scholar 

  38. P. Hall (1932) A contribution to the theory of groups of prime power order, Proc. London Math. Soc. II, Ser. 36, 39–95.

    Google Scholar 

  39. P. Hall (1936) The Eulerian functions of a group, Quart. J. Math. (Oxford), 134–151.

    Google Scholar 

  40. G.H. Hardy and E.M. Wright (1954) An Introduction to the Theory of Numbers, Oxford.

    MATH  Google Scholar 

  41. V. Klee (1963) The Euler characteristic in combinatorial geometry, Amer. Math. Monthly 70, 119–127.

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Lakser (1971) The homology of a lattice, Discrete Math. 1, 187–192.

    Article  MathSciNet  MATH  Google Scholar 

  43. B. Lindström (1969) Determinants on semilattices, Proc. Amer. Math. Soc. 20, 207–208.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Mather (1966) Invariance of the homology of a lattice, Proc. Amer. Math. Soc. 17, 1120–1124.

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Orlik and L. Solomon (1980) Combinatorics and topology of complements of hyperplanes, Inventiones Math. 56, 167–189.

    Article  MathSciNet  MATH  Google Scholar 

  46. P. Orlik and L. Solomon (1980) Unitary reflection groups and cohomology, Inventiones Math. 59, 77–94.

    Article  MathSciNet  MATH  Google Scholar 

  47. D.- Quillen (1978) Homotopy properties of nontrivial p-subgroups of a group, Advances in Math. 28, 101–128.

    Article  MathSciNet  MATH  Google Scholar 

  48. G.-C. Rota (1964) On the foundations of combinatorial theory I: Theory of Möbius functions, Zeit. für Wahrscheinlichkeitstheorie 2, 340–368.

    Article  MathSciNet  MATH  Google Scholar 

  49. G.-C. Rota (1971) On the combinatorics of the Euler characteristic, in: Studies in Pure Mathematics (L. Mirsky, ed.) Academic Press, London, 221–233.

    Google Scholar 

  50. G.-C. Rota (1973) The valuation ring of a lattice, Proc. Houston Lattice Theory Conference.

    Google Scholar 

  51. G.-C. Rota (1969) Baxter algebras and combinatorial identities II, Bull. Amer. Math. Soc. 75, 330–334.

    Article  MathSciNet  MATH  Google Scholar 

  52. G.-C. Rota (1975) Finite Operator Calculus, Academic Press, New York.

    MATH  Google Scholar 

  53. G.-C. Rota and D. Smith (1977) Enumeration under group action, Ann. Scuola Normale Superiore Pisa, Ser. 4, Vol. 4, 637–646.

    MathSciNet  MATH  Google Scholar 

  54. D.A. Smith (1967, 1969 ) Incidence functions as generalized arithmetic functions I, II, Duke Math. J. 34, 617–633, 36, 15–30.

    Article  MathSciNet  Google Scholar 

  55. L. Solomon (1967) The Burnside algebra of a finite group, J. Combinatorial Theory 2, 603–615.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Solomon (1979) Partially ordered sets with colors, in: Relations between Combinatorics and Other Parts of Mathematics, Proc. Symp. in Pure Math. 24, American Math. Soc., Providence, 309–329.

    Google Scholar 

  57. R. Stanley (1970) Incidence algebras and their automorphism groups, Bull. Amer. Math. Soc. 76, 1236–1239.

    Article  MathSciNet  MATH  Google Scholar 

  58. R. Stanley (1971) Modular elements of geometric lattices, Algebra Universalis 1, 214–217.

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Stanley (1972) Ordered structures and partitions, Mem. Amer. Math. Soc. 119.

    Google Scholar 

  60. R. Stanley (1972) Supersolvable lattices, Algebra Universalis 2, 197–217.

    Article  MathSciNet  MATH  Google Scholar 

  61. R. Stanley (1973) Acyclic orientations of graphs, Discrete Math. 5, 171–178.

    Article  MathSciNet  MATH  Google Scholar 

  62. R. Stanley (1974) Finite lattices and Jordan-Holder sets, Algebra Universalis 4, 361–371.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Stanley (1974) Combinatorial reciprocity theorems, Advances in Math. 14, 194–253.

    Article  MathSciNet  MATH  Google Scholar 

  64. R. Stanley (1976) Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory 20, 336–356.

    Article  MathSciNet  MATH  Google Scholar 

  65. R. Stanley (1981) Some aspects of groups acting on finite posets, preprint.

    Google Scholar 

  66. J.W. Walker (1981) Homotopy type and Euler characteristic of partially ordered sets, preprint.

    Google Scholar 

  67. L. Weisner (1935) Abstract theory of inversion of finite series, Trans. Amer. Math. Soc. 38, 474–484.

    Article  MathSciNet  Google Scholar 

  68. H. Whitney (1932) A logical expansion in mathematics, Bull. Amer. Math. Soc. 38, 572–579.

    Article  MathSciNet  Google Scholar 

  69. H. Wilf (1968) Hadamard determinants, Möbius functions, and the chromatic number of a graph, Bull. Amer. Math. Soc. 74, 960–964.

    Article  MathSciNet  MATH  Google Scholar 

  70. T. Zaslavsky (1975) Facing up to arrangements: face count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 154.

    Google Scholar 

  71. T. Zaslavsky (1977) A combinatorial analysis of topological dissections, Advances in Math. 25, 267–285.

    Article  MathSciNet  MATH  Google Scholar 

  72. T. Zaslavsky (1981) The geometry of root systems and signed graphs, Amer. Math. Monthly 88, 88–105.

    Article  MathSciNet  MATH  Google Scholar 

  73. T. Zaslavsky (1979) Arrangements of hyperplanes; matroids and graphs, Proc Tenth Boca Raton Conf. on Combinatories, Graph Theory, and Computing, Utilitas Publ. Co. (Winnipeg), 895–911.

    Google Scholar 

  74. T. Zaslavsky (to appear) Signed graph coloring, Discrete Math.

    Google Scholar 

  75. T. Zaslavsky (1980) The slimmest arrangements of hyperplanes: I. Geometric lattices and projective arrangements; II. Basepointed geometric lattices and Euclidean arrangements, preprints.

    Google Scholar 

  76. T. Zaslavsky (in prep.) The Mobius function and the characteristic polynomial, in: Combinatorial Geometries (H. Crapo, G.-C. Rota, N. White, eds.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

Greene, C. (1982). The Möbius Function of a Partially Ordered Set. In: Rival, I. (eds) Ordered Sets. NATO Advanced Study Institutes Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7798-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7798-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7800-3

  • Online ISBN: 978-94-009-7798-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics