Non Linear Einstein-Maxwell Differential Equations

  • G. Antonacopoulos
  • C. G. Kostakis

Abstract

Starting with the Einstein-Maxwell field equations in general relativity we construct the general differential equations govering the components of the metric tensor. These equations allow us to find hij in various orders.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonacopoulos, G. and Tsoupakis, E.: 1979, Astrophys. and Space Sci., 62, 183ADSCrossRefGoogle Scholar
  2. Antonacopoulos, G.: 1979, Astrophys. and Space Sci., 62, 217ADSMATHCrossRefGoogle Scholar
  3. Bażański, S.: 1956, Acta Phys. Pol. 15, 363.Google Scholar
  4. Bażański, S.: 1957, Acta Phys. Pol. 16, 423.Google Scholar
  5. Bertotti, B.: 1955, Nuovo Cimento, 2, 231.MathSciNetMATHGoogle Scholar
  6. Chandrasekhar, S. and Esposito, F.P.: 1970, Astrophys. J. 160, 153.MathSciNetADSCrossRefGoogle Scholar
  7. Chase, D.M.: 1954, Phys. Rev. 95, 243.MathSciNetADSMATHCrossRefGoogle Scholar
  8. Dionysiou, D.D.: 1976, Nuovo Cimento, 33B, 519; 35B, 363.Google Scholar
  9. Dionysiou, D.D.: 1977, Nuovo Cimento Letters, 19, 383.ADSCrossRefGoogle Scholar
  10. Dionysiou, D.D.: 1979, Nuovo Cimento, 52B, 56.CrossRefGoogle Scholar
  11. Dionysiou, D.D.: 1980, Astrophys. and Space Sci., 73, 295.MathSciNetADSMATHCrossRefGoogle Scholar
  12. Dionysiou, D.D.: 1981a, Astrophys. and Space Sci., 76, 513.ADSGoogle Scholar
  13. Dionysiou, D.D.: 1981b, Astrophys. and Space Sci., 77, 383.MathSciNetADSMATHCrossRefGoogle Scholar
  14. Dionysiou, D.D.: 1981c, Int. J. of Theor. Phys., 20, 1.CrossRefGoogle Scholar
  15. Dionysiou, D.D. and Vaiopoulos, D.A.: 1979, Nuovo Cimento Letters, 26, 5.CrossRefGoogle Scholar
  16. Eddington, A.S.: 1953, Fundamental Theory, Cambridge Univ. Press, Cambridge.Google Scholar
  17. Einstein, A., Infeld, L., and Hoffmann, B.: 1938, Ann. Math. 39, 65.MathSciNetCrossRefGoogle Scholar
  18. Einstein, A. and Infeld, L.: 1940, Ann. Math. 41, 797.MathSciNetCrossRefGoogle Scholar
  19. Einstein, A. and Infeld, L.: 1949, Can. J. Math. 1, 209.MathSciNetMATHCrossRefGoogle Scholar
  20. Infeld, L. and Wallace, P.R.: 1940, Phys. Rev. 57, 797.MathSciNetADSMATHCrossRefGoogle Scholar
  21. Kostakis, C.G.: 1981, Ph. D. Thesis. Univ. of Patras.Google Scholar
  22. Landau, L.D. and Lifshitz, E.M.: 1975, The Classical Theory of Fields, Pergamon Press, Oxford.Google Scholar
  23. Ohta, T., Okamura, H., Kimura, T., and Hiida, K.: 1973, Prog. Theor. Phys. 50, 492.ADSCrossRefGoogle Scholar
  24. Ohta, T., Okamura, H., Kimura, T., and Hiida, K.: 1974, Prog. Theor. Phys. 51, 1220.ADSCrossRefGoogle Scholar
  25. Tsoupakis, E.: 1979, Ph. D. Thesis, Univ. of Patras.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1982

Authors and Affiliations

  • G. Antonacopoulos
    • 1
  • C. G. Kostakis
    • 2
  1. 1.Department of AstronomyUniversity of PatrasPatrasGreece
  2. 2.Department of MathematicsHellenic Air-Force AcademyDekelia, AtticaGreece

Personalised recommendations