Advertisement

The Sperm Cell pp 214-217 | Cite as

Structural Elements of the Mammalian Sperm Nucleus

  • Anthony R. Bellvé
  • Stuart B. Moss

Abstract

During spermiogenesis the spherical nucleus of the germ cell condenses and assumes a configuration that is distinct for each mammalian species. This nuclear transformation, whether yielding a falciform, spatulate or discoid shape, serves to protect the haploid genome and to facilitate penetration of the ovum by the motile sperm cell. Remodeling of the nucleus is complex. The process involves the removal of histones, the selective elimination of most nonhistone chromosomal proteins, the deposition of protamines, and the insertion of novel nuclear proteins (Bellvé, 1979; Bellvé & O’Brien, 1982). A microtubular array, the manchette, exists transiently in association with the condensing nucleus, acting as an external scaffold rather than imposing a direct mechanical force (Myles & Hepler, 1982). Consequently, sperm nuclear shape may be defined intrinsically by nuclear proteins, as suggested previously by Fawcett et al. (1971).

Keywords

Guanidine Hydrochloride Sperm Nucleus Dense Lamina Nuclear Transformation Discoid Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedford JM, Calvin HI. 1974. J Exp Zool. 188: 137–156.PubMedCrossRefGoogle Scholar
  2. 2.
    Bellvé AR. 1979. In: Finn CA, ed. Oxford Reviews of Reproductive Biology, pp. 159–261. Oxford, Oxford University Press.Google Scholar
  3. 3.
    Bellvé AR. 1982, in press. In: Amann RP, Seidel GE Jr, eds. Prospects for Sexing Mammalian Sperm. Boulder, Colorado Assoc. University Press.Google Scholar
  4. 4.
    Bellvé AR, Anderson E, Haniey-Bowdoin L. 1975. Develop Biol. 47: 349–365.PubMedCrossRefGoogle Scholar
  5. 5.
    Bellvé AR, O’Brien DA. 1982, in press. In: Hartman JF, ed. Mechanisms and Control of Fertilization. New York, Academic Press, Inc.Google Scholar
  6. 6.
    Evenson DP, Witkin SS, deHarven E, Bendich A. 1978. J Ultrastruct Res. 63: 178–187.PubMedCrossRefGoogle Scholar
  7. 7.
    Fawcett DW, Anderson WA, Phillips DM. 1971. Develop Biol. 26: 220–251.PubMedCrossRefGoogle Scholar
  8. 8.
    Franke WW, Scheer U, Krohne G, Jarasch E-D. 1981. J Cell Biol. 91: 39s–50s.PubMedCrossRefGoogle Scholar
  9. 9.
    Gaastra W, Lukkes-Hofstra J, Kolk AJH. 1978. Biochem Genet. 16: 525–529.PubMedCrossRefGoogle Scholar
  10. 10.
    Grimes SR Jr, Meistrich ML, Platz RD, Hnlica LS. 1977. Exp Cell Res. 110: 31–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Lalli M, Clermont Y. 1981. Am J Arat. 160: 419–434.Google Scholar
  12. 12.
    Mayer JF, Chang TSK, Zirkin BR. 1981. Biol Reprod. 25: 1041–1051.PubMedCrossRefGoogle Scholar
  13. 13.
    Myles DG, Hepler PK. 1982. Develop Biol. 90: 238–252.PubMedCrossRefGoogle Scholar
  14. 14.
    O’Brien DA, Bellvé AR. 1980a. Develop Biol. 75: 386–404.PubMedCrossRefGoogle Scholar
  15. 15.
    O’Brien DA, Bellv£ AR. 1980b. Develop Biol. 75: 405–418.PubMedCrossRefGoogle Scholar
  16. 16.
    Paulson JR, Laemmli UK. 1977. Cell 12: 817–828.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1983

Authors and Affiliations

  • Anthony R. Bellvé
    • 1
  • Stuart B. Moss
    • 1
  1. 1.Laboratory of Human Reproduction and Reproductive BiologyHarvard Medical SchoolBostonUSA

Personalised recommendations