Advertisement

Josephson Integrated Circuits

  • Ernest J. Van Derveer
Part of the NATO Advanced Study Institutes Series book series (NSSE, volume 55)

Abstract

Nineteen years ago, B. D. Josephson1 predicted a supercurrent at zero voltage between two superconducting metals, separated by a thin insulator. Today, 20–25 laboratories around the world are actively studying the possible exploitation of devices based on the Josephson effect. Although the promise of a very fast device (picosecond) at low power levels (microwatt) has yet to be realized in a computing system, usage of Josephson junctions as a voltage standard and an extremely sensitive magnetic-field detector is widespread. The attractions of Josephson devices are summarized in Table 1. The combination of a fast, low power circuit plus superconducting transmission lines offers the possibility of packing and interconnecting hundreds of thousands of circuits and hundreds of millions of memory bits into a volume very comparable to that occupied by the human brain;2 a feat unachievable with a high-performance semiconductor technology.

Keywords

Integrate Circuit Josephson Junction Memory Chip Josephson Current London Penetration Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. D. Josephson, (July 1962), Possible New Effects in Superconductive Tunnelling. Phys. Rev. Lett., vol. 1, no. 7., p. 251.MATHGoogle Scholar
  2. 2.
    W. Anacker, (May 1979), Computing at 4 Degrees Kelvin. IEEE Spectrum, vol. 16, no. 5, p. 26.Google Scholar
  3. 3.
    E. A. Lynton, (1967), Superconductivity, Wiley, New York.Google Scholar
  4. 4.
    R. L. Kautz, (Jan. 1978), Picosecond Pulses on Superconducting Striplines. J. Appl. Phys., vol. 49, no. 1, pp. 308–314.MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Giaever, (Aug. 1960), Energy Gap in Superconductors Measured by Electron Tunnelling. Phys. Rev. Lett., vol. 5, p. 147.CrossRefGoogle Scholar
  6. 6.
    J. Badeen L. M. Cooper and J. R. Schrieffer, (April 1957), Microscopic Theory of Superconductivity. Phys. Rev., vol. 106, p. 162; and (December 1957), Theory of Superconductivity. Phys. Rev., vol. 108, p. 1175.MathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Esaki, (Jan 1958), New Phenomenon in Narrow Germanium p-n Junctions. Phys. Rev., vol. 109, p. 603.CrossRefGoogle Scholar
  8. 8.
    H. H. Zappe and B. S. Landman, (Jan. 1978), Analysis of Resonance Phenomenon in Josephson Quantum Interference Devices. J. Appl. Phys., vol. 49, p. 344.CrossRefGoogle Scholar
  9. 8.
    H. H. Zappe and B. S. Landman, (July 1978), Experimental Investigation of Resonances in Low-Q Josephson Interference Devices, J. Appl. Phys., vol. 49, p. 4149.CrossRefGoogle Scholar
  10. 9.
    P. W. Anderson and J. M. Rowell, (1963), Probable Observation of the Josephson Superconducting Tunnelling Effect. Phys. Rev. Lett., vol. 10, p. 230.CrossRefGoogle Scholar
  11. 10.
    J. M.Rowell, (1963), Magnetic Field Dependencies of the Josephson Tunnel Current. Phys. Rev. Lett., vol. 11, p. 200.CrossRefGoogle Scholar
  12. 11.
    J. Matisoo, (1966), Subnanosecond Pair Tunnelling to Single-Particle Tunnelling Transition in Josephson Junctions. Appl. Phys. Lett., vol. 9, p. 167.CrossRefGoogle Scholar
  13. 12.
    B. S. Landman, (1977), Calculations of Threshold Curves for Josephson Quantum Interference Devices. IEEE Trans. Mag., vol. MAG-13, pp. 871. Also, E. O. Schultz-DuBois and P. Wolf, (Oct. 1967), Static Characteristics of Josephson Interferometers. Presented at the Int. Conf. on Superconducting Quantum Devices.CrossRefGoogle Scholar
  14. 13.
    R. F. Broom, W. Kotyczka and A Moser, (March 1980), Modeling of Characteristics for Josephson Junctions Having Non-Uniform Width or Josephson Current Density. IBM J. Res. Develop., vol. 24, no. 2, p. 178.CrossRefGoogle Scholar
  15. 14.
    T. Gheewala, (March 1980), Design of 2.5 Micrometer Josephson Current Injection Logic. IBM J. Res. Develop., vol. 24, no. 2, p. 130.CrossRefGoogle Scholar
  16. 15.
    W. C. Stewart, (April 1968), Current-Voltage Characteristics of Josephson Junctions. Appl. Phys. Lett., vol. 12, p. 277.CrossRefGoogle Scholar
  17. 16.
    D. E. McCumber, (June 1968), Effect of AC Impedence on DC Voltage-Current Characteristics of Superconducting Weak-Link Junctions. J. Appl. Phys., vol. 19, p. 3113.CrossRefGoogle Scholar
  18. 17.
    P. C. Arnett and D. H. Herrell, (1979), Regulated AC Power for Josephson Interferometers for Latching Logic Circuits. IEEE Trans. Magn., vol. MAG-15, p. 544.Google Scholar
  19. 18.
    A. Davidson, (Oct. 1978), A Josephson Latch. IEEE J. Solid-State Circuits, vol. SC-13, p. 583.CrossRefGoogle Scholar
  20. 19.
    T. A. Fulton and R. C. Dynes, (June 15, 1971), Switching to Zero Voltage in Josephson Tunnel Junctions. Solid-State Commun., vol. 9, p. 1069.CrossRefGoogle Scholar
  21. 20.
    W. Baechtold, T. Forster, W. Hellberger and Th.O. Mohr, (May 15, 9175), Complementary Josephson-Junction Circuit: A Fast Flip-Flop and Logic Gate. Electron Lett., vol. 11, no. 10, p. 203.Google Scholar
  22. 21.
    T. Gheewala and A. Mukherjee, (Washington DC, Dec. 3–5, 1979), Josephson Direct-Coupled Logic (DCL). IEDM Tech. Dig., p. 482.Google Scholar
  23. 22.
    T. A. Fulton, S. S. Pei and L. N. Dunkleberger, (May 15, 1979), A Simple High Performance Current Switched Josephson Logic. Appl. Phys. Lett., vol. 34, no. 10, p. 709.CrossRefGoogle Scholar
  24. 23.
    T. Gheewala, (Oct. 1979), 30-picosecond Josephson Current Injection Logic (CIL). IEEE J. Solid-State Circuits, vol. SC-14, no. 5, p. 787.CrossRefGoogle Scholar
  25. 24.
    E. P. Harris, (Jan. 1979), Turn-On Delay of Josephson Interferometer Logic Devices. IEEE Trans. Magn., vol. MAG-15, p. 562. Also, D. G. McDonald, R. L. Patterson, C. A. Hamilton, R. E. Harris and R. L. Kautz, (Oct. 1980), Picosecond Applications of Josephson Junctions, IEEE Trans. Electron Devices, vol. ED-27, no. 10, p. 1945.CrossRefGoogle Scholar
  26. 25.
    T. Gheewala, (Oct. 1980), Josephson-Logic Devices and Circuits. IEEE Trans. Electron Devices, vol. 27, no. 10, p. 1857.CrossRefGoogle Scholar
  27. 26.
    IBM Advanced Statistical Analysis Program, IBM Publication No. SH20–1118–0, available through IBM Branch Offices.Google Scholar
  28. 27.
    C. A. Hamilton, F. L. Lloyd, R. L. Peterson and J. R. Andrews, A Superconducting Sampler for Josephson Logic Circuits. Appl. Phys. Lett., vol. 35, p. 718. (Nov. 1, 1979).CrossRefGoogle Scholar
  29. 28.
    D. Tuckerman, (June 15, 1980), A Josephson Ultra-High Resolution Sampling System. Appl. Phys. Lett., vol. 36, p. 1008.CrossRefGoogle Scholar
  30. 29.
    W. H. Henkels nd H. H. Zappe, (Oct. 1978), An Experimental 64-bit Decoded Josephson NDRO Random Memory. IEEE J. Solid-State Circuits, vol. SC-13, no. 5, p. 591.CrossRefGoogle Scholar
  31. 30.
    H. H. Zappe, (Feb. 1975), A Subnanosecond Josephson Tunnelling Memory Cell with Non-Destructive Readout. IEEE J. Solid-State Circuits, vol. SC-10, no. 1, p. 12.CrossRefGoogle Scholar
  32. 31.
    H. H. Zappe, Josephson Quantum Interference Computer Devices. IEEE Trans. Magn., vol. MAG-13, p. 41, Jan. 1977.CrossRefGoogle Scholar
  33. 32.
    S. M. Faris, W. H. Henkels., E. A. Valsamakis and H. H. Zappe, (Mar. 1980), Basic Design of a Josephson Cache Memory. IBM J. Res. Develop. (Special Issue on Josephson Technology), vol. 24, no. 2. p. 143.Google Scholar
  34. 33.
    P. Gueret, (Mar. 1975), Storage and Detection of a Single Flux Quantum in Josephson Junction Devices. IEEE Trans. Magn., vol. MAG-11, no. 2, p. 751.CrossRefGoogle Scholar
  35. 34.
    P. Gueret, Th.O. Möhr and P. Wolf. (Jan. 1977), Single Flux-Quantum Memory Cells. IEEE Trans. Magn., vol. MAG-13, no. 1. p. 52.CrossRefGoogle Scholar
  36. 35.
    H. Beha, (Sept. 1977), Two-Josephson-Junction Interferometer Memory Cell for NDRO. Electron. Lett., vol. 13, no. 20, p. 596.CrossRefGoogle Scholar
  37. 36.
    R. F. Broom, P. Geuret, W. Kotyczka, Th.O. Möhr, A. Moser, A. Oosenbrug and P. Wolf, (Feb. 1977), Model for a 15 ns 16 K RAM with Josephson Junctions. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, p. 60.Google Scholar
  38. 37.
    P. Gueret, A. Moser and P. Wolf, (Mar. 1980), Investigations for a Josephson Computer Main Memory with Single Flux Quantum Cells. IBM J. Res. Develop. (Special Issue on Josephson Technology), vol. 24, no. 2, p. 155.Google Scholar
  39. 38.
    R. Guernsey and E. Flint, (May 1981), Refrigeration Requirement for Superconducting Computers. NBS special refrigeration for cryogenic sensors and electronic systems.Google Scholar
  40. 39.
    J. E. Zimmermann and D. B. Sullivan, (1979), A Milliwatt Sterling Cycle Cryocooler for Temperatures below 4°K, Cryogenics, vol. 19, p. 170.CrossRefGoogle Scholar
  41. 40.
    D. B. Sullivan and J. E. Zimmermann, (1979), Very Low Power Sterling Cryocooler Using Plastic and Composite Materials. Int. J. Refrig., vol. 2, p. 211.CrossRefGoogle Scholar
  42. 41.
    J. H. Greiner, et al. (Mar. 1980), Fabrication Process for Josephson Integrated Circuits. IBM J. Res. Develop. (Special Issue on Josephson Technology), vol. 24, no. 2, p. 195.MathSciNetGoogle Scholar
  43. 42.
    R. F. Broom, S. I. Raider, A. Oosenbrug, R. E. Drake and W. Walter, (Oct. 1980), Niobium Oxide Barrier Tunnel Junction. IEEE Trans. Electron Devices, vol. ED-27, no. 10, p. 1998.CrossRefGoogle Scholar
  44. 43.
    A. V. Brown, (March 1980), An Overview of Josephson Packaging. IBM J. Res. Develop., vol. 21, no. 2, p. 167.CrossRefGoogle Scholar
  45. 44.
    R. F. Broom and Th.O. Möhr, (May/June 1978), Studies on Arrays of Josephson Tunnel Junction Interferometers. J. Vac. Sei. Technol., vol. 15, p. 1166.CrossRefGoogle Scholar
  46. 45.
    W. Anacker, (March 1980), Josephson Computer Technology: An IBM Research Project. IBM J. Res. Develop., vol. 24, no. 2 p. 107.CrossRefGoogle Scholar
  47. 46.
    R. F. Broom, A. Oosenbrug and W. Walter, (1980), Josephson Junctions of Small Area Formed on the Edge of Niobium Films. Appl. Phys. Lett., vol. 37, p. 237.CrossRefGoogle Scholar
  48. 47.
    T. Van Duzer (May 1980), Proceedings of Second International Conference on Superconductivity Quantum Devices, West Berlin.Google Scholar
  49. 48.
    W. Baechtold, (1980), Josephson High-Performance Logic. Proc. IEEE Int. Conf. on Circuits and Computers, ICCC 80, vol.2, p. 879.Google Scholar
  50. 49.
    K. E. Gray, (Mar. 15, 1978), A Superconducting Transistor. Appl. Phys. Lett., vol. 36, no. 6, p. 392.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1982

Authors and Affiliations

  • Ernest J. Van Derveer
    • 1
  1. 1.IBM Zurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations