Advertisement

Seasonal dynamics of nitrogen cycling for a Prosopis woodland in the Sonoran Desert

  • P. W. Rundel
  • E. T. Nilsen
  • M. R. Sharifi
  • R. A. Virginia
  • W. M. Jarrell
  • D. H. Kohl
  • G. B. Shearer
Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 6)

Abstract

Prosopis woodlands in the Sonoran Desert have levels of above-ground biomass and productivity much higher than those predicted for desert plant communities with such low levels of precipitation. A stand of P. glandulosa near the Salton Sea, California, has 13,000kg ha-1 above-ground biomass and a productivity of 3700 kg ha-1 yr-1. Such a high level of productivity is possible because Prosopis is decoupled from the normal limiting factors of water and nitrogen availability. Soil nitrogen contents for the upper 60 cm of soil beneath Prosopis canopies have 1020 g m-2 total nitrogen, 25 per cent of which is in the form of nitrate. Such accumulations of nitrogen may be the result of active symbiotic nitrogen fixation. Early estimates suggest that about 25–30 kg N ha-1 yr-1 is fixed in these stands. Since Prosopis covers only 34% of the ground surface and its water resources are not limiting, much higher levels of nitrogen fixation and productivity may be possible in managed stands at greater densities.

Key words

Desert woodland N-cycling N2fixation Prosopis glandulosa Sonoran Desert 
Dinamica estacional del ciclo de nitrógeno de un bosque de Prosopis en el desierto Sonorense

Resumen

Los bosques de Prosopis en el desierto Sonorense tienen nivelés de production de biomasa (parte aérea) y productividad mucho mayores que las predecibles para comunidades de plantas de desierto con muy bajos nivelés de precipitation. Los bosques freatofiticos de P. glandulosa cerca del Mar de Salton, California, producen 13 000kg ha-1 de biomasa aérea con una productividad 3 700 kg ha-1 año-1. Tan aito nivel de productividad es posible porque Prosopis no es afectado por los factores que limitan la aprovechabilidad de agua y nitrógeno.

Los primeros 60cm del perfil del suelo bajo el dosel de Prosopis contienen 1020g m-2 de nitrógeno total, el 25% existe en la forma de nitrato. Tales acumulaciones de nitrógeno pueden ser el resultado de la fijación simbiótica activa. Los primeros valores estimados sugieren que son fijados entre 25–30kg N ha-1 año-1 en estos bosques. Puesto que Prosopis cubre solamente 34% de esta área y sus recursos de agua no son limitantes, puede ser posible la obtention de mayores nivelés de fijación de nitrógeno y productividad de los cultivos si se manejan con mayores densidades.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delwiche C C, Zinke P J, Johnson C M and Virginia R A 1979 Nitrogen isotope distribution as a presumptive indicator of nitrogen fixation. Bot. Gaz. 140 (suppl.), 65–69.CrossRefGoogle Scholar
  2. 2.
    Eskew D L and Ting I P 1978 Nitrogen fixation by legumes and blue green algal-lichen crusts in a Colorado desert environment, (unpublished).Google Scholar
  3. 3.
    Felker P 1979 Mesquite: an all purpose leguminous arid land tree, pp 89–132. In Ritchie G A (Ed.). New Agricultural Crops. Colorado: Westview Press.Google Scholar
  4. 4.
    Fried M and Broeshart H 1975 An independent measurement of the amount of nitrogen fixed by a legume crop. Plant and Soil 43, 707–711.CrossRefGoogle Scholar
  5. 5.
    Gibson A H 1976 Recovery and compensation by nodulated legumes to environmental stress, pp 385–403. In Nutman P S (Ed.). Symbiotic Nitrogen Fixation in Plants. Cambridge: Cambridge University Press.Google Scholar
  6. 6.
    Klubek B, Eberhardt P J and Skujins J 1978 Ammonia volatilization from Great Basin desert soils, pp 107–129. In West N E and Skujins J (Eds.). Nitrogen in Desert Ecosystems. New York: Dowden, Hutchinson, and Ross, Inc.Google Scholar
  7. 7.
    Kohl D H, Schearer G and Harper J E 1980 Estimates of N2 fixation based on differences in the natural abundance of 15N in nodulating and non-nodulating isolines of soybeans. Plant Physiol. 66, 61–65.CrossRefGoogle Scholar
  8. 8.
    Kohl D H, Bryan B A, Schearer G and Skeeters J L 1981 Natural abundance of 15N of Prosopis as an index of N2-fixation in desert ecosystems. Bull. Ecol. Soc. Am. 62, 133–134.Google Scholar
  9. 9.
    Mooney H A, Gulmon S L, Rundel P W and Ehleringer J 1980 Further observations on the water relations of Prosopis tamarugo of the northern Atakama desert. Oecologia 44, 177–180.CrossRefGoogle Scholar
  10. 10.
    Nilsen E T, Rundel P W and Sharifi M R 1982 Productivity in native stands of Prosopis glandulosa, mesquite, in the Sonoran desert of southern California and some management implications. California Riparian Environment Symposium. Sept. 17–19., Davis, CA.Google Scholar
  11. 11.
    Phillips W S 1963 Depth of roots in soil. Ecology 44, 424.CrossRefGoogle Scholar
  12. 12.
    Phillips D A 1980 Efficiency of symbiotic nitrogen fixation in legumes. Annu. Rev. Plant Physiol. 31, 29–49.CrossRefGoogle Scholar
  13. 13.
    Ryden J C, Lund L J, Letey J and Focht D D 1979 Direct measurement of denitrification loss from soils. II. Development and application of field methods. Soil Sci. Soc. Am. J. 43, 110–118.CrossRefGoogle Scholar
  14. 14.
    Schlesinger W H and Hasey M M 1980 The nutrient content of precipitations, dry fallout, and intercepted aerosols in the chaparral of southern California. Am. Mid. Nat. 103, 114–122.CrossRefGoogle Scholar
  15. 15.
    Sharifi M R, Nilsen E T and Rundel P W 1982 Biomass and net primary production of Prosopis glandulosa (Fabaceae) in the Sonoran desert of southern California. Am. J. Bot. (in press).Google Scholar
  16. 16.
    Shearer G and Kohl D H 1978 15N abundance in N2-fixing and non-N2-fixing plants, pp 605–622. In Frigerio A (Ed.). Recent Developments in Mass Spectrometry in Biochemistry and Medicine, Vol. 1. New York: Plenum Press.Google Scholar
  17. 17.
    Simpson B B 1977 Mesquite-its biology in two desert ecosystems. Stroudsburg, Pa: Dowden, Hutchinson, and Ross, Inc.Google Scholar
  18. 18.
    Stewart W D P 1977 Present day nitrogen fixing plants. Ambio 6, 166–173.Google Scholar
  19. 19.
    Virginia R A, Jarrell W M, Kohl D H and Shearer G B 1981 Symbiotic nitrogen fixation in a Prosopis (Leguminosae)-dominated desert ecosystem. 483 p. In Gibson A H and Newton W E (Eds.). Current Perspectives in Nitrogen Fixation. Canberra: Aust. Acad. Science.Google Scholar
  20. 20.
    Virginia R A, Jarrell W M and Franco-Vizcaino E 1982 Direct measurement of denitrification in a Prosopis (mesquite)-dominated Sonoran desert ecosystem. Oecologia (in press).Google Scholar
  21. 21.
    West N E and Skujins J (Eds.) 1978 Nitrogen in Desert Ecosystems. Stroudsburg, Pa: Dowden, Hutchinson, and Ross, Inc. 307 p.Google Scholar
  22. 22.
    Whittaker R H 1975 Communities and Ecosystems. New York: MacMillan. 385 p.Google Scholar
  23. 23.
    Whittaker R H and Marks P L 1975 Methods of assessing terrestrial productivity, pp 55–118. In Lieth H and Whittaker R H (Eds.). Primary Productivity in the Biosphere. New York: Springer-Verlag.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers, The Hague 1982

Authors and Affiliations

  • P. W. Rundel
    • 1
  • E. T. Nilsen
    • 1
  • M. R. Sharifi
    • 1
  • R. A. Virginia
    • 2
  • W. M. Jarrell
    • 2
  • D. H. Kohl
    • 3
  • G. B. Shearer
    • 3
  1. 1.Dept. of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA
  2. 2.Dept. of Soil and Environmental SciencesUniversity of CaliforniaRiversideUSA
  3. 3.Dept. of BiologyWashington UniversitySt. LouisUSA

Personalised recommendations