Advertisement

Nitrogen cycle of tropical perennial crops under shade trees I. Coffee

  • J. Aranguren
  • G. Escalante
  • R. Herrera
Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 6)

Abstract

The distribution and fluxes of nitrogen in some parts of a coffee plantation under shade were studied at a typical mountain (1380 m a s 1) location in Venezuela. The amounts of nitrogen in the soil to 60cm depth are by far the largest nitrogen store, reaching a total of 49 000kg ha-1. The nitrogen flow associated with litterfall was dominated by the shade-tree fraction accounting for a transfer of 86kg ha-1 yr-1 of the total 189kg ha-1 yr-1. The rapid decomposition of this litter, although showing a phase of nitrogen accumulation, is an important source of nitrogen to the roots of coffee which occupy preferentially the upper 30 cm of soil and even the litter layer itself. Some evidence of synchrony was found between the peaks of nitrogen transfer to the soil by litter and the periods of high nitrogen demand by the crop plants. It is proposed that the system can amply compensate the nitrogen outputs by harvest (17 kg ha-1 yr-1) with a subsidy from the shade trees. Erythrina sp. and Inga sp. are potential nitrogen fixers although we found no active sites during the dry period sampled. The average litter decomposition constant, k, expressed in terms of nitrogen, was estimated as 4.5, equivalent to a half-life of approximately two months.

Key words

Coffee Decomposition Litterfall N-cycling N2-fixation Shade trees Venezuela 

Ciclo de nitrógeno en cultivos tropicales permanentes bajo árboles de sombra 1. Café

Resumen

La distributión y flujos de nitrógeno en algunos componentes de una plantación de café bajo sombra fueron estudiados en un cafetal de montaña (1380 m altitud) en Venezuela. Las reservas mayores de nitrógeno estaban en el suelo que hasta los 60cm tenía 49 × 103 kg N ha-1. El flujo de nitrógeno asociado con la caída de hojarasca estaba dominado por la fracción de hojas de los árboles de sombra que contribuyeron con 86 kg N ha-1 año-1 del total de 189 kg N ha-1 año-1. La rápida descomposición de esa hojarasca, aun cuando mostró una fase de acumulación de nitrógeno, es fuente importante de nitrógeno para las raices del cafeto que ocupan preferentemente los primeros 30 cm del suelo y aun en la hojarasca misma. Se encontró evidencia de sincronización entre los picos de transferencia de nitrógeno por la hojarasca y los períodos de mayor demanda por el cultivo. Se encontró que el sistema puede compensar ampliamente le salida de nitrógeno por cosecha con el subsidio proveniente de los árboles de sombra. Erythrina sp e Inga sp son fijadores potenciales de nitrógeno aun cuando en determinaciones hechas durante el período de sequía no se detectó actividad de fijación biológica. La constante de descomposición (k) promedio para la hojarasca fue de 4,5, equivalente a una vida media de unos dos meses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad N, Reid E D, Nkrumah M, Griffith S M and Gabriel L 1982 Crop utilization and fixation on added ammonium in soils of the West Indies. In Robertson G P, Herrera R and Rosswall T (eds.) Nitrogen cycling in Ecosystems of Latin America and the Caribbean. Plant and Soil 67, 167–186.Google Scholar
  2. 2.
    Aranguren J 1980 Contributión de la caida de hojarasca al ciclo de nutrientes en cultivos bajo árboles de sombra. M.Sc. Thesis Instituto Venezolano de Investigaciones Científicas, Caracas 285 p.Google Scholar
  3. 3.
    Berg B and Staaf H 1981 Leaching, accumulation and release of nitrogen in decomposing forest litter. In Terrestrial Nitrogen Cycles. Clark F E and Rosswall T (Eds.). Ecol. Bull. Stockholm 33, 273–279.Google Scholar
  4. 4.
    Bornemisza E 1982 Nitrogen cycling in coffee plantations. In Robertson G P, Herrera R and Rosswall T (eds.) Nitrogen cycling in Ecosystems of Latin America and the Caribbean. Plant and Soil 67, 241–246.Google Scholar
  5. 5.
    Coste R 1975 El Café. Colección de Agricultura Tropical. Editorial Blume, Barcelona 240 p.Google Scholar
  6. 6.
    Delgado-Palacios G 1935 Contribución al estudio del café en Venezuela. Publ. Universidad Central de Venezuela, Caracas 63 p.Google Scholar
  7. 7.
    Franco C M and Inforzato R 1946 Sistema radicular do cafeeiro nos principals tipos do solo do Estado de Sao Paulo. Bragantia 6, 443–478.CrossRefGoogle Scholar
  8. 8.
    Hardy F 1959 La relación carbono-nitrogeno en los suelos de cacao. Turrialba 9, 4–11.Google Scholar
  9. 9.
    Hardy R W F, Holstein R D, Lackson E K and Burns R C 1968 The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Pl. Physol. 43, 1185–1207.CrossRefGoogle Scholar
  10. 10.
    Herrera R and Jordan C F 1981 Nitrogen cycle in a tropical Amazonian main forest: the caatinga of low mineral nutrient status. In Clark F E and Rosswall T (Eds.). Terrestrial Nitrogen Cycles. Ecol. Bull. Stockholm 33, 493–505.Google Scholar
  11. 11.
    Jordan C F, Todd R and Escalante G 1979 Nitrogen conservation in a tropical rain forest. Oecologia 39,123–128.CrossRefGoogle Scholar
  12. 12.
    Jordan C F, Caskey W, Escalante G, Herrera R, Montagnini F, Todd R and Uhl C 1982 The nitrogen cycle in a ‘Tierra Firme’ rain forest on oxisol in the Amazon Territory of Venezuela. In Robertson G P, Herrera R and Rosswall T (eds.) Nitrogen cycling in Ecosystems of Latin America and the Caribbean. Plant and Soil 67, 325–332.Google Scholar
  13. 13.
    Nômmik H 1981 Fixation and biological availability of ammonium in soil clay monerals. In Terrestrial Nitrogen Cycles. Clark F E and Rosswall T (Eds.). Ecol. Bull. Stockholm 33, 273–279.Google Scholar
  14. 14.
    Olson J S 1963 Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331.CrossRefGoogle Scholar
  15. 15.
    Roskoski J P 1982 Nitrogen fixation in a Mexican coffee plantation. In Robertson G P, Herrera R and Rosswall T (eds.) Nitrogen cycling in Ecosystems of Latin America and the Caribbean. Plant and Soil 67, 283–291.Google Scholar
  16. 16.
    Rowe R, Todd R L and Waide J 1977 Microtechnique for most probable number analysis. Appl. Environ. Microbiol. 33, 675–680.Google Scholar
  17. 17.
    Suarez de Castro F 1953 Distribución de las raices de Coffea arabica en un suelo franco-limoso. Bol. Tecn. Federación Nacional de Cafeteros de Colombia 1, 5–28.Google Scholar
  18. 18.
    Suarez de Castro F and Rodríguez A 1955 Equilibrio de materia orgánica en plantaciones de café. Bol. Tecn. Federación Nacional de Cafeteros de Colombia 3, 5–28.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers, The Hague 1982

Authors and Affiliations

  • J. Aranguren
    • 1
  • G. Escalante
    • 1
  • R. Herrera
    • 1
  1. 1.Centro de EcologíaInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela

Personalised recommendations