Skip to main content

The Physicochemical Properties and Transmembraneous Transport of Doxorubicin

  • Chapter
Anthracycline Antibiotics in Cancer Therapy

Part of the book series: Developments in Oncology ((DION,volume 10))

Abstract

Doxorubicin is one of our most widely used and potent drugs against human cancer. It is generally assumed that doxorubicin has to enter the cell across the plasma membrane in order to exert its therapeutic effect by interference with the function of the DNA in the cell nucleus through intercalation (1). The transport mechanism by which doxorubicin enters the cell across the rate-limiting barrier is still under debate. It has been proposed that doxorubicin is actively extruded from the cells, counteracting a facilitated diffusion transport process (a carrier-mediated transport) into the cells because 1) the cellular doxorubicin uptake increases in the presence of metabolic inhibitors, and 2) the doxorubicin transport shows saturation kinetics, self-inhibition, and substrate competition (2–4). However, a membrane-bound doxorubicin-activated ATP’ase has not yet been demonstrated. So far, doxorubicin has been demonstrated to be an inhibitor of the Na,K-activated membrane-bound ATP’ase (5). Furthermore, in order to understand the transmembraneous transport mechanism of a compound, one must demonstrate how the physicochemical characteristics of the compound in the water phases on both sides of the membrane are affected, for example, by the concentration of the compound itself, the concentration of other compounds, the temperature, and the pH. The purpose of the present paper is 1) to summarize data on some of the physicochemical properties of doxorubicin in aqueous solution, and 2) to describe how these properties apparently explain some of the features of doxorubicin transport across biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pigram, WJ, Fuller W, Hamilton LD. 1972. Stereochemistry of intercalation: Interaction of daunanycin with DNA. Nature (London), New Biol. 235: 17–19.

    Article  CAS  Google Scholar 

  2. Danoe KJ. 1976. Experimentally developed resistance to daunanycin. Acta Path. Microbiol. Scand., suppl. 256.

    Google Scholar 

  3. Skovsgaard T. 1977. Transport and binding of daunanycin, adriamycin and rubidazone in Ehrlich ascites tumour cells. Biochem. Pharmacol. 26: 215–222.

    Article  PubMed  CAS  Google Scholar 

  4. Skovsgaard T. 1978. Carrier-mediated transport of daunanycin, adriamycin and rubidazone in Ehrlich ascites tumor cells. Biochem. Pharmacol. 27: 1221–1227.

    Article  PubMed  CAS  Google Scholar 

  5. Gosalves M, van Rossum GDV, Blanco MF. 1979. Inhibition of sodiumpotassium-activated adenosine 5#x2019;-triphosphatase and ion transport by adriamycin. Cancer Res. 39: 257–261.

    Google Scholar 

  6. Arcamone F, Cassinelli G, Franceschi G, Penco S, Pol C, Redaelli S, Selva A. 1972. Structure and physicochemical properties of adriamycin (doxorubicin). In: Int. Symp. Adriamycin (Carter SK, Di Marco A, Ghione M, Krakoff IH, Mathe G, eds.). p;New York, Springer-Verlag, pp. 9–22.

    Google Scholar 

  7. Bates RG. 1973. Determination of pH. 2nd ed. New York, John Wiley, p. 90.

    Google Scholar 

  8. Dalmark M, Storm HH. In press. A Fickian diffusion transport process with features of transport catalysis: Doxorubicin transport in human red blood cells. J. Gen. Physiol.

    Google Scholar 

  9. Barthelemy-Clavey V, Maurizot J-C, Dimicoli J-L, Sicard P. 1974. Self-association of daunomycin. FEBS Lett. 46: 5–10.

    Article  PubMed  CAS  Google Scholar 

  10. Eksborg S. 1978. Extraction of daunanycin and doxorubicin and their hydroxyl metabolites: Self-association in aqueous solutions. J. Pharm. Sci. 67: 782–785.

    Article  PubMed  CAS  Google Scholar 

  11. Righetti PG, Menozzi M, Gianazza E, Valentini L. 1979. Proto lytic equilibria of doxorubicin as determined by isoelectric focusing and “electrophoretic titration curves.#x201D; FEBS Lett. 101: 51–55.

    Article  PubMed  CAS  Google Scholar 

  12. Bachur NR, Moore AL, Bernstein JG, Liu A. 1970. Tissue distribut~on and disposition of daunomycin in mice: Fluoranetric and isotopic methods. Cancer Chemother. Rep. 54: 89–94.

    PubMed  CAS  Google Scholar 

  13. Duarte-Karim M, Ruysschaert JM, Hildebrand J. 1976. Affinity of adriamycin to phospholipids: A possible explanation for cardiac mitochondrial lesions. Biochem. Biophys. Res. Commun. 71: 658–663.

    Article  PubMed  CAS  Google Scholar 

  14. Goormaghtigh E, Chatelain P, Caspers J, Ruysschaert JM. 1980. Evidence of a specific complex between Adriamycin and negatively charged phosphlipids. Biochim. Biophys. Acta 597: 1–14.

    Article  PubMed  CAS  Google Scholar 

  15. Goormagtigh E, Chatelain P, Caspers J, Ruysschaert JM. 1980. Evidence of a complex between Adriamycin derivatives and cardiolipin: Possible role in cardiotoxicity. Biochem. Pharmacol. 29: 3003–3010.

    Article  Google Scholar 

  16. Menozzi M, Arcamone F. 1978. Binding of adriamycin to sulphated mucopolysaccharides. Biochem. Biophys. Res. Commun. 80: 313–318.

    Article  PubMed  CAS  Google Scholar 

  17. Kikuchi H, Sato S. 1976. Binding of daunomycin to nonhistone proteins from rat liver. Biochim. Biophys. Acta 434: 509–512.

    PubMed  CAS  Google Scholar 

  18. Chao Na, Tirnasheff SN. 1977. Physical-chemical study of daunornycintubu1in interactions. Arch. Biochem. Biophys. 182: 147–154.

    Article  Google Scholar 

  19. Kharasch ED, Novak RF. 1980. Ring current effect in Adriamycin-flavin mononucleotide complexation as observed by H FT NMR spectroscopy. Biochem. Biophys. Res. Commun. 92: 1320–1326.

    Article  PubMed  CAS  Google Scholar 

  20. Brock N, Druckrey H, Hamperl H. 1938. Zur Wirkungsweise carcinogener Substanzen. Arch. Exp. Pathol. Pharmakol. 189: 709–731.

    Article  CAS  Google Scholar 

  21. Dalrnark M, Johansen P. 1981. Regulations of doxorubicin (Adriamycin) transport across biological membranes by complex formation with nucleotides, nucleosides, and DNA-derived bases. Proc. Am. Assoc. Cancer Res. 22: 31.

    Google Scholar 

  22. Dalrnark M. In press. Characteristics of doxorubicin transport in human red blood cells. Scand. J. C1in. Lab. Invest.

    Google Scholar 

  23. Dalrnark M, Wieth JO. 1972. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J. Physiol. (London) 224: 583–610.

    Google Scholar 

  24. Mikkelsen RD, Peck-Sun L, Wallach DFH. 1977. Interaction of adridffiycin with human red blood cells: A biochemical and morphological study. J. Mol. Med. 2: 33–40.

    CAS  Google Scholar 

  25. Tritton TR, Murphree SA, Sartorelli AC. 1978. Citation in Biochim. Biophys. Acta 512: 254–269. (See ref. 26.)

    Article  Google Scholar 

  26. Goldman R, Facchinatti T, Bach D, Raz A, Shinitzky M. 1978. A differential interaction of daunomycin, adriamycin and their derivatives with human erythrocytes and phospholipids bilayers. Biochim. Biophys. Acta 512: 254–269.

    Article  PubMed  CAS  Google Scholar 

  27. Kessel D. 1979. Biologic properties of three anthracyc1ines as a function of lipophi1icity. Biochem. Pharmacol. 28: 3028–3030.

    Article  PubMed  CAS  Google Scholar 

  28. Egorin MJ, Clawson RE, Ross LA, Bachur NR. 1980. Cellular pharmacology of N,N-dimethyl daunomycin and N,N-dimethyl Adriarnycin. Cancer Res. 40: 1928–1933.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Dalmark, M. (1982). The Physicochemical Properties and Transmembraneous Transport of Doxorubicin. In: Muggia, F.M., Young, C.W., Carter, S.K. (eds) Anthracycline Antibiotics in Cancer Therapy. Developments in Oncology, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7630-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7630-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7632-0

  • Online ISBN: 978-94-009-7630-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics