Skip to main content

Role of Natural Killer (NK) Cells in Resistance to Tumors

  • Chapter
  • 46 Accesses

Part of the book series: Cancer Treatment and Research ((CTAR,volume 8))

Abstract

Studies on natural cell-mediated cytotoxicity began as a rather restricted effort, to understand a puzzling series of observations that were made during investigations of cell-mediated cytotoxicity in tumor-bearing or in individuals immunized against tumors. The expected finding was specific cytotoxic activity against autologous tumor cells or against tumors of the same histologic or etiologic type. It was assumed in the initial studies that lymphoid cells from normal individuals would be unreactive and thus would serve as good baseline controls for comparison. Indeed, mice or rats immunized against various tumors, especially those induced by type C oncorna-viruses, were found to have increased cytotoxic reactivity against the immunizing tumor or against tumor cells sharing the relevant tumor-associated antigens [1–4]. Similarly, a considerable proportion of patients with various types of cancer appeared to selectively react against cell lines derived from tumors of the same organ or of the same histologic type [4, 5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oren ME, Herberman RB, Canty TG: Immune response to Gross virus-induced lymphoma. II. Kinetics of the cellular immune response. J Natl Cancer Inst 46: 621–629, 1971.

    PubMed  CAS  Google Scholar 

  2. Leclerc JC, Gomard E, Levy JP: Cell-mediated reaction against tumors induced by oncornaviruses. I. Kinetics and specificity of the immune response in murine sarcoma virus (MSV)-induced tumors and transplanted lymphomas. Int J Cancer 10: 589–601, 1972.

    PubMed  CAS  Google Scholar 

  3. Lavrin DH, Herberman RB, Nunn M, Soares N: in vitro cytotoxicity studies of murine sarcoma virus (MSV)-induced immunity in mice. J Natl Cancer Inst 51: 1497–1508, 1973.

    PubMed  CAS  Google Scholar 

  4. Herberman RB: Cell-mediated immunity to tumor cells. In: Advances in cancer research, Vol. 19, Klein G, Weinhouse S (eds). New York: Academic Press, 1974, pp. 207–263.

    Google Scholar 

  5. Hellström KE, Hellström J: Lymphocyte-mediated cytotoxicity and blocking serum activity to tumor antigens. Adv Immunol 18: 209–277, 1974.

    PubMed  Google Scholar 

  6. Rosenberg EB, Herberman RB, Levine PH, Halterman RH, McCoy JL, Wunderlich JR: Lymphocyte cytotoxicity reactions to leukemia-associated antigens in identical twins. Int J Cancer 9: 648–658, 1972.

    PubMed  CAS  Google Scholar 

  7. Oldham RK, Herberman RB: Evaluation of cell-mediated cytotoxic reactivity against tumor associated antigens, utilizing ‘251-iododeoxyuridine labeled target cells. J Immunol 111: 1862–1871, 1973.

    CAS  Google Scholar 

  8. McCoy JL, Herberman RB, Rosenberg EB, Donnelly FC, Levine PH, Alford C: 5tChromium-release assay for cell-mediated cytotoxicity of human leukemia and lymphoid tissue-culture cells. Nati Cancer Inst Monogr 37: 59–67, 1973.

    CAS  Google Scholar 

  9. Rosenberg EB, McCoy JL, Green SS, Donnelly FC, Siwarski DF, Levine PH, Herberman RB: Destruction of human lymphoid tissue culture cell lines by human peripheral blood lymphocytes in s’Cr-release cellular cytotoxicity assays. J Natl Cancer Inst 52: 345, 1974.

    PubMed  CAS  Google Scholar 

  10. Herberman RB, Gaylord CE (eds): Conference and workshop on cellular immune reactions to human tumor-associated antigens. Natl Cancer Inst Monogr 37:1–221, 1973.

    Google Scholar 

  11. Takasugi M. Mickey MR, Terasaki PI: Reactivity of normal lymphocytes from normal persons on cultured tumor cells. Cancer Res 33: 2898–2902, 1973.

    PubMed  CAS  Google Scholar 

  12. Skurzak HM, Steiner L, Klein E, Lamon EW: Cytotoxicity of human peripheral lymphocytes for glioma, osteosarcoma and glia cell lines. Natl Cancer Inst Monogr 37: 93–99, 1973.

    PubMed  CAS  Google Scholar 

  13. Heppner G, Henry E, Stolbach L, Cummings F, McDonough E, Calabresi P: Problems in the clinical use of the microcytotoxicity assay for measuring cell-mediated immunity to tumor cells. Cancer Res 35: 1931–1937, 1975.

    PubMed  CAS  Google Scholar 

  14. Peter HH, Kalden JR, Seeland P, Diehl V, Eckert G: Humoral and cellular immune reactions in vitro against allogeneic and autologous melanoma cells. Clin Exp Immunol 20: 193–207, 1975.

    PubMed  CAS  Google Scholar 

  15. Kay HD, Thota H,. Sinkovics JG: A comparative study on in vitro cytotoxic reactions of lymphocytes from normal donors and patients with sarcomas to cultured tumor cells. Clin Immunol Immunopathol 5: 218–234, 1976.

    PubMed  CAS  Google Scholar 

  16. Canevari S, Fossati G, DellaPorta G: Cellular immune reaction to human malignant melanoma and breast carcinoma cells. J Natl Cancer Inst 56: 705–709, 1976.

    PubMed  CAS  Google Scholar 

  17. Nunn M, Djeu J, Lavrin D, Herberman R: Natural cytotoxic reactivity of rat lymphocytes against syngeneic Gross leukemia. Proc Am Assoc Cancer Res 14: 87, 1973.

    Google Scholar 

  18. Herberman RB, Ting CC, Kirchner H, Holden H, Glaser M, Bonnard GD, Lavrin D: Effector mechanisms in tumour immunity. In: Progress in immunology, II, Brent L, Holborow J (eds). Amsterdam: North-Holland Publishing Co, 1974, pp. 285–295.

    Google Scholar 

  19. Herberman RB (ed): Natural cell-mediated immunity against tumors. New York: Academic Press, 1980.

    Google Scholar 

  20. Herberman RB, Holden HT: Natural cell-mediated immunity. Adv Cancer Res 27: 305–377, 1978.

    PubMed  CAS  Google Scholar 

  21. Kiessling R, Petrânyi G, Klein G, Wigzell H: Non-T-cell resistance against a mouse Moloney lymphoma. Int J Cancer 17: 275–281, 1976.

    PubMed  CAS  Google Scholar 

  22. Riesenfeld I, Orn A, Gidlund M, Axberg I, Alm GV, Wigzell H: Positive correlation between in vitro NK activity and in vivo resistance towards AKR lymphoma cells. Int J Cancer 25: 399–403, 1980.

    PubMed  CAS  Google Scholar 

  23. Sendo F, Aoki T, Boyse EA, Buofo CK: Natural occurrence of lymphocytes showing cytotoxic activity to BALB/c radiation-induced leukemia RLOL cells. J Natl Cancer Inst 55: 603–609, 1975.

    PubMed  CAS  Google Scholar 

  24. Hanna N: Expression of metastatic potential of tumor cells in young nude mice is correlated with low levels of natural killer cell-mediated cytotoxicity. Int J Cancer 26: 675–680, 1980.

    PubMed  CAS  Google Scholar 

  25. Hanna N, Fidler IJ: Expression of metastatic potential of allogenic and xenogeneic neoplasms in young nude mice. Cancer Res 41: 438–444, 1981.

    PubMed  CAS  Google Scholar 

  26. Rygaard J, Poulsen CO: Heterotransplantation of a human malignant tumor to nude mice. Acta Pathol Microbiol Scand 77: 759–760, 1969.

    Google Scholar 

  27. Castro JE: Human tumours grown in mice. Nature New Biol 239: 83–84, 1972.

    PubMed  CAS  Google Scholar 

  28. Ozzello L, Sordat B, Merenda C, Carrel S, Hurlimann J, Mach JP: Transplantation of a human mammary carcinoma cell line (BT 20) into nude mice. J Natl Cancer Inst 52: 1669 1672, 1974.

    Google Scholar 

  29. Schmidt M, Good RA: Cancer xenografts in nude mice. Lancet 1: 39, 1976.

    PubMed  CAS  Google Scholar 

  30. Maguire H Jr, Outzen HC, Custer RP, Prehn RT: Invasion and metastasis of a xenogeneic tumor in nude mice. J Natl Cancer Inst 57: 439–442, 1976.

    PubMed  Google Scholar 

  31. Sharkey FE, Fogh J: Metastasis of human tumors in athymic nude mice. Int J Cancer 24: 733–738, 1979.

    PubMed  CAS  Google Scholar 

  32. Haller O, Kiessling R, Om A, Kärre K, Nilsson K, Wigzell H: Natural cytotoxicity to human leukemia mediated by mouse non-T-cells. Int J Cancer 20: 93–103, 1977.

    PubMed  CAS  Google Scholar 

  33. Nunn ME, Herberman RB: Natural cytotoxicity of mouse, rat and human lymphocytes against heterologous target cells. J Natl Cancer Inst 62: 765–771, 1979.

    PubMed  CAS  Google Scholar 

  34. Kiessling R, Petrânyi G, Klein G, Wigzell H: Genetic variation of in vitro cytolytic activity and in vivo rejection potential of non-immunized semisyngeneic mice against a mouse lymphoma line. Int J Cancer 15: 933–940, 1975.

    PubMed  CAS  Google Scholar 

  35. Petrânyi G, Kiessling R, Povey S, Klein G, Herzenberg E, Wigzell H: The genetic control of natural killer cell activity and its association with in vivo resistance against a Moloney lymphoma isograft. Immunogenetics 3: 15–28, 1976.

    Google Scholar 

  36. Haller O, Kiessling R, Örn A, Wigzell H: Generation of natural killer cells: an autonomous function of the bone marrow. J Exp Med 145: 1411–1416, 1977.

    PubMed  CAS  Google Scholar 

  37. Gorelik E, Fogel M, Feldman M, Segal S: Differences in resistance of metastatic tumor cells and cells from local tumor growth to cytotoxicity of natural killer cells. J Natl Cancer Inst 63: 1397–1404, 1979.

    PubMed  CAS  Google Scholar 

  38. Roder J, Duwe A: The beige mutation in the mouse selectively impairs natural killer cell function. Nature 278: 451–453, 1979.

    PubMed  CAS  Google Scholar 

  39. Talmadge JE, Meyers-KM, Prieur DJ, Starkey JR: Role of NK cells in tumour growth and metastasis in beige mice. -Nature 284: 622–624, 1980.

    CAS  Google Scholar 

  40. Kärre K, Klein GO, Kiessling R, Klein G, Roder JC: Low natural in vivo resistance to syngeneic leukaemias in natural killer-deficient mice. Nature 284: 624–626, 1980.

    PubMed  Google Scholar 

  41. Kasai M, Leclerc JC, McVay-Boudreau L, Shen FW, Cantor H: Direct evidence that natural killer cells in nonimmune spleen cell populations prevent tumor growth in vivo. J Exp Med 149: 1260–1264, 1979.

    PubMed  CAS  Google Scholar 

  42. Tam MR, Emmons SL, Pollack SB: FACS analysis and enrichment of NK effector cells. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp. 265–276.

    Google Scholar 

  43. Cheever MA, Greenberg PD, Fefer A: Therapy of leukemia by nonimmune syngeneic spleen cells. J Immunol 124: 2137–2142, 1980.

    PubMed  CAS  Google Scholar 

  44. Cheever MA, Greenberg PD, Fefer A: Therapy of leukemia by nonimmune syngeneic spleen cells. J Immunol 124: 2137–2142, 1980.

    PubMed  CAS  Google Scholar 

  45. Riccardi C, Puccetti P, Santoni A, Herberman RB: Rapid in vivo assay of mouse NK cell activity. J Natl Cancer Inst 63: 1041–1045, 1979.

    PubMed  CAS  Google Scholar 

  46. Riccardi C, Santoni A, Barlozzari T, Puccetti P, Herberman RB: In vivo natural reactivity of mice against tumor cells. Int J Cancer 25: 475–486, 1980.

    PubMed  CAS  Google Scholar 

  47. Riccardi C, Santoni A, Barlozzari T, Herberman RB: Role of NK cells in rapid in vivo clearance of radiolabeled tumor cells. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 1121–1139.

    Google Scholar 

  48. Riccardi C, Barlozzari T, Santoni A, Herberman RB, Cesarini C: Transfer to cyclophosphamide-treated mice of natural killer (NK) cells and in vivo natural reactivity against tumors. J Immunol 126: 1284–1289, 1981.

    PubMed  CAS  Google Scholar 

  49. Riccardi C, Barlozzari T, Santoni A, Herberman RB, Cesarini C: Transfer to cyclophosphamide-treated mice of natural killer (NK) cells and in vivo natural reactivity against tumors. J Immunol 126: 1284–1289, 1981.

    PubMed  CAS  Google Scholar 

  50. Hanna N, Fidler IJ: The role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst 65: 801–809, 1980.

    PubMed  CAS  Google Scholar 

  51. Hanna N, Fidler IJ: The role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst 65: 801–809, 1980.

    PubMed  CAS  Google Scholar 

  52. Paige CJ, Figarella EF, Cuttito MJ, Cahan A, Stutman O Natural cytotoxic cells against solid tumors in mice. II. Some characteristics of the effector cells. J Immunol 121: 1827 1835, 1978.

    Google Scholar 

  53. Stutman O, Figarella EF, Paige CJ, Lattime EC: Natural cytotoxic (NC) cells against solid tumors in mice: general characteristics and comparison to natural killer (NK) cells. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 187–229.

    Google Scholar 

  54. Gerson JM: Systemic and in situ natural killer activity in tumor-bearing mice and patients with cancer. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 1047–1062.

    Google Scholar 

  55. Becker S, Kiessling R, Lee M, Klein G: Modulation of sensitivity to natural killer cell lysis after in vitro explanation of a mouse lymphoma. J Natl Cancer Inst 61: 1495–1498, 1978.

    PubMed  CAS  Google Scholar 

  56. Durdik JM, Beck BN, Henney CS: The use of lymphoma cell variants differing in their susceptibility to NK cell mediated lysis to analyze NK cell-target cell interactions. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp. 805–817.

    Google Scholar 

  57. Collins JL, Patek PQ, Cohn M: Tumorigenicity and lysis by natural killers. J Exp Med 153: 89–106, 1981.

    PubMed  CAS  Google Scholar 

  58. Kunkel LA, Welsh RM: Metabolic inhibitors render `resistant’ target cells sensitive to natural killer cell-mediated lysis. Int J Cancer 27: 73–79, 1981.

    PubMed  CAS  Google Scholar 

  59. Trinchieri G, Santoli D: Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J Exp Med 147: 1. 314–1333, 1978.

    Google Scholar 

  60. Welsh RM Jr, Kiessling RW: Modification of target susceptibility to activated mouse NK cells by interferon and virus infections. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 963–972.

    Google Scholar 

  61. Herberman RB, Nunn ME, Lavrin DH: Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 16: 216–229, 1975.

    PubMed  CAS  Google Scholar 

  62. Becker S, Klein E: Decreased `natural killer’–NK–effect in tumor bearing mice and its relation to the immunity against oncorna virus determined cell surface antigens. Eur J Immunol 6: 892–898. 1977.

    Google Scholar 

  63. McCoy J, Herberman R, Perlin E, Levine P, Alford C: 51Cr release cellular lymphocyte cytotoxicity as a possible measure of immunological competence of cancer patients. Proc Am Assoc Cancer Res 14: 107, 1973.

    Google Scholar 

  64. Takasugi M, Ramseyer A, Takasugi J: Decline of natural nonselective cell-mediated cytotoxicity in patients with tumor progression. Cancer Res 37: 413–418, 1977.

    PubMed  CAS  Google Scholar 

  65. Hersey P, Edwards A, McCarthy WH: Tumour-related changes in natural killer cell activity in melanoma patients. Influence of stage of disease, tumour thickness and age of patients. Int J Cancer 25: 187–194, 1980.

    PubMed  CAS  Google Scholar 

  66. Forbes JT, Greco FA, Oldham RK: Natural cell-mediated cytotoxicity in human tumor patients. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 1031–1046.

    Google Scholar 

  67. Pross HF, Baines MG: Natural killer cells in tumour-bearing patients. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 1063–1072.

    Google Scholar 

  68. Gerson JM, Varesio L, Herberman RB: Systemic and in situ natural killer and suppressor cell activities in mice bearing progressively growing murine sarcoma-virus-induced tumors. Int J Cancer 27: 243–248, 1981.

    PubMed  CAS  Google Scholar 

  69. Vose BM: Natural killers in human cancer: Activity of tumor-infiltrating and draining node lymphocytes. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 1081–1097.

    Google Scholar 

  70. Eremin 0: NK cell activity in the blood, tumor-draining lymph nodes and primary tumours of women with mammary carcinoma. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 1011–1027.

    Google Scholar 

  71. Eremin 0: NK cell activity in the blood, tumor-draining lymph nodes and primary tumours of women with mammary carcinoma. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 1011–1027.

    Google Scholar 

  72. Brunda MJ, Herberman RB, Holden HT: Inhibition of murine natural killer cell activity by prostaglandins. J Immunol 124: 2682–2687, 1980.

    PubMed  CAS  Google Scholar 

  73. Brunda MJ, Herberman RB, Holden HT: Inhibition of murine natural killer cell activity by prostaglandins. J Immunol 124: 2682–2687, 1980.

    PubMed  CAS  Google Scholar 

  74. Nunn ME, Herberman RB, Holden HT: Natural cell-mediated cytotoxicity in mice against non-lymphoid tumor cells and some normal cells. Int J Cancer 20: 381–387, 1977.

    PubMed  CAS  Google Scholar 

  75. Axberg I, Gidlund M, Orn A, Pattengale P, Riesenfeld I, Stern P, Wigzell H: In: Thymus, thymic hormones and T lymphocytes, Aiuti F (ed). New York: Academic Press, 1980, pp 154–164.

    Google Scholar 

  76. Zarling JM, Eskra L, Borden EC, Horoszewicz J, Carter WA: Activation of human natural killer cells cytotoxic for human leukemia cells by purified interferon. J Immunol 123:- 63–70, 1979.

    Google Scholar 

  77. Vânky FT, Argov SA, Einhorn SA, Klein E: Role of alloantigens in natural killing: Allogeneic but not autologous tumor biopsy cells are sensitive for interferon-induced cytotoxicity of human blood lymphocytes. J Exp Med 151: 1151–1165, 1980.

    PubMed  Google Scholar 

  78. Vânky FT, Argov SA, Einhorn SA, Klein E: Role of alloantigens in natural killing: Allogeneic but not autologous tumor biopsy cells are sensitive for interferon-induced cytotoxicity of human blood lymphocytes. J Exp Med 151: 1151–1165, 1980.

    PubMed  Google Scholar 

  79. Ortaldo JR, Oldham RK, Cannon GC, Herberman RB: Specificity of natural cytotoxic reactivity of normal human lymphocytes against a myeloid leukemia cell line. J Natl Cancer Inst 59: 77–82, 1977.

    PubMed  CAS  Google Scholar 

  80. Kiessling R, Klein E, Wigzell H: `Natural’ killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5: 112–117, 1975.

    PubMed  CAS  Google Scholar 

  81. Becker S: Intratumor NK reactivity. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 985–996.

    Google Scholar 

  82. Prehn RT: Immunosurveillance, regeneration and oncogenesis. Progr Exp Tumor Res 14: 1–24, 1971.

    PubMed  CAS  Google Scholar 

  83. Schwartz RS: Another look at immunologic surveillance. New Eng J Med 293: 181–184, 1975.

    PubMed  CAS  Google Scholar 

  84. Burnet FM: Cancer — a biological approach. Brit Med J 1:779–786; 841–847, 1957.

    Google Scholar 

  85. Thomas L: Discussion. In: Cellular and humoral aspects of the hypertensive state, Lawrence HS (ed). New York: Harper, 1959, pp 529–530.

    Google Scholar 

  86. Burnet FM: The concept of immunological surveillance. Progr Exp Tumor Res 13: 1–27, 1970.

    PubMed  CAS  Google Scholar 

  87. Stutman 0: Immunodepression and malignancy. In: Advances in cancer research, Vol 22, Klein G, Weinhouse S, Haddow A (eds). New York: Academic Press, 1975, pp 261–422.

    Google Scholar 

  88. Stutman O: Chemical carcinogenesis in nude mice: Comparison between nude mice from homozygous matings and heterozygous matings and effect of age and carcinogen dose. J Natl Cancer Inst 62: 353–358, 1979.

    PubMed  CAS  Google Scholar 

  89. Hewitt HB, Blake ER, Walder AS: A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Brit J Cancer 33: 241–259, 1976.

    PubMed  CAS  Google Scholar 

  90. Klein G, Klein E: Rejectability of virus induced tumors and non-rejectability of spontaneous tumors — a lesson in contrasts. Transpl Proc 9: 1095–1104, 1977.

    CAS  Google Scholar 

  91. Prehn RT, Lappe MA: An immunostimulation theory of tumor development. Transpl Rev 7: 26–54, 1971.

    CAS  Google Scholar 

  92. Goldfarb RH, Herberman RB: Characteristics of natural killer cells and possible mechanisms for their cytotoxic activity. In: Advances in inflammation research, Weissman G. (ed). New York: Raven Press (in press).

    Google Scholar 

  93. Lotan R: Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim Biophys Acta 605: 33–37, 1980.

    PubMed  CAS  Google Scholar 

  94. Shope TC, Kaplan J: Inhibition of the in vitro outgrowth of Epstein-Barr virus-infected lymphocytes by TG lymphocytes. J Immunol 123: 2150–2155, 1979.

    PubMed  CAS  Google Scholar 

  95. Dent PB, Fish LA, White JF, Good RA: Chediak-Higashi syndrome. Observations on the nature of the associated malignancy. Lab Invest 15: 1634–1641, 1966.

    PubMed  CAS  Google Scholar 

  96. Roder JC, Haliotis T, Klein M, Korec S, Jett JR, Ortaldo J, Herberman RB, Katz P, Fauci AS: A new immunodeficiency disorder in humans involving NK cells. Nature 284: 553–555, 1980.

    Google Scholar 

  97. Roder JC, Laing L, Haliotis T, Kozbor D: Genetic control of human NK function. In: NK CELLS: Fundamental aspects and role in cancer. Human cancer immunology, Vol 6, Serrou B, Rosenfeld C, Herberman RB (eds). Amsterdam: North-Holland Publishing Co (in press).

    Google Scholar 

  98. Roder JC, Lohmann-Matthes M-L, Domzig W, Wigzell H: The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect. J Immunol 123: 2174–2181, 1979.

    PubMed  CAS  Google Scholar 

  99. Brunda MJ, Holden HT, Herberman RB: Augmentation of natural killer cell activity of beige mice by interferon and interferon inducers. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 411–415.

    Google Scholar 

  100. Cudkowicz G: Role of natural killer cells in natural resistance against bone marrow transplants. In: Symposium on role of natural killer cells, macrophages and antibody dependent cellular cytotoxicity in tumor rejection and as mediators of biological response modifiers activity, Chirogos MA (ed). New York: Raven Press (in press).

    Google Scholar 

  101. Loutit JF, Townsend KMS, Knowles JF: Tumour surveillance in beige mice. Nature 285: 66, 1980.

    Google Scholar 

  102. Purtilo DT, De Florio D, Hutt LM, Bhawan J, Yang JPS, Otto R, Edwards W: New Engl J Med 297: 1077, 1977.

    PubMed  CAS  Google Scholar 

  103. Sullivan JL, Byron KS, Brewster FE, Purtilo DT: Deficient natural killer cell activity in X-linked lymphoproliferative syndrome. Science 210: 543–545, 1980.

    PubMed  CAS  Google Scholar 

  104. Penn I, Starzl TE: A summary of the status of de novo cancer in transplant recipients. Transpl Proc 4: 719–732, 1972.

    CAS  Google Scholar 

  105. Lipinski M, Tursz T, Kreis H, Finale Y, Amicl JL: Dissociation of natural killer cell activity and antibody-dependent cell-mediated cytotoxicity in kidney allograft recipients receiving high-dose immunosuppressive therapy. Transplantation 29: 214–218, 1980.

    PubMed  CAS  Google Scholar 

  106. Gorelik E, Herberman RB: Inhibition of the activity of mouse NK cells by urethane. J Natl Cancer Inst 66: 543–548, 1981.

    PubMed  CAS  Google Scholar 

  107. Gorelik E, Herberman RB: Carcinogen-induced inhibition of NK activity in mice. Fed Proc 40: 1093, 1981.

    Google Scholar 

  108. Kraskovsky G, Gorelik L, Kagan L: Abrogation of the immunosuppressive and carcinogenic action of urethan by transplantation of syngeneic bone marrow cells from normal mice. Proc Acad Sci BSSR 11: 1052–1053, 1973.

    Google Scholar 

  109. Ehrlich R, Efrati M, Witz IP: Cytotoxicity and cytostasis mediated by splenocytes of mice subjected to chemical carcinogens and of mice bearing primary tumors. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 997–1010.

    Google Scholar 

  110. Hochman PS, Cudkowicz G, Dausset J: Decline of natural killer cell activity in sublethally irradiated mice. J Natl Cancer Inst 61: 265–268, 1978.

    PubMed  CAS  Google Scholar 

  111. Parkinson DR, Brightman RP, Waksal SD: Altered natural killer cell biology in C57BL/6 mice after leukemogenic split-dose irradiation. J Immunol 126: 1460–1464, 1981.

    PubMed  CAS  Google Scholar 

  112. Kaplan HS, Brown MB, Paull J: Influence of bone marrow injections on involution and neoplasia of mouse thymus after systemic irradiation. J Natl Cancer Inst 14: 303–316, 1953.

    PubMed  CAS  Google Scholar 

  113. Keller R: Suppression of natural antitumor defence mechanisms by phorbol esters. Nature 282: 729–731, 1979.

    PubMed  CAS  Google Scholar 

  114. Burton RC: Alloantisera selectively reactive with NK cells: Characterization and use in defining NK cell classes. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 19–35.

    Google Scholar 

  115. Mahoney KH, Morse SS, Morahan PS: Macrophage functions in beige (Chediak-Higashi syndrome) mice. Cancer Res 40: 3934–3939, 1980.

    PubMed  CAS  Google Scholar 

  116. Benczur M, Petranyi GG, Palffy G, Varga M, Talas M, Kotsy B, Földes I, Hollan SR: Dysfunction of natural killer cells in multiple sclerosis: A possible pathogenetic factor. Clin Exp Immunol 39: 657–662, 1980.

    PubMed  CAS  Google Scholar 

  117. Hoffman T: Natural killer function in systemic lupus erythematosus. Arthritis and Rheumatism 23: 30–35, 1980.

    PubMed  CAS  Google Scholar 

  118. Kiessling R, Hochman PS, Haller O, Shearer GM, Wigzell H, Cudkowicz G: Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts. Eur J Immunol 7: 655–663, 1977.

    PubMed  CAS  Google Scholar 

  119. Oehler JR, Herberman RB: Natural cell-mediated cytotoxicity in rats. III. Effects of immunopharmacologic treatments on natural reactivity and on reactivity augmented by polyinosinic-polycytidylic acid. Int J Cancer 21: 221–229, 1978.

    PubMed  CAS  Google Scholar 

  120. Djeu JY, Heinbaugh J, Vieira WD, Holden HT, Herberman RB: The effect of immunopharmacological agents on mouse natural cell-mediated cytotoxicity and on its augmentation by poly I:C. Immunopharmacology 1: 231–244, 1979.

    PubMed  CAS  Google Scholar 

  121. Herberman RB, Rosenberg EB, Halterman RH, McCoy JL, Leventhal BG: Cellular immune reactions to human leukemia. Natl Cancer Inst Monogr 35: 259–266, 1972.

    PubMed  CAS  Google Scholar 

  122. Introna M, Allavena P, Spreafico F, Mantovani A: Inhibition of human natural killer activity by cyclosporin A. Transplant 31: 113–116, 1981.

    CAS  Google Scholar 

  123. Mantovani A, Luini W, Peri G, Vecchi A, Spreafico F: Effect of chemotherapeutic agents on natural cell-mediated cytotoxicity in mice. J Natl Cancer Inst 61: 1255–1261, 1978.

    PubMed  CAS  Google Scholar 

  124. Santoni A, Riccardi C, Sorci V, Herberman RB: Effects of adriamycin on the activity of mouse natural cells. J Immunol 124: 2329–2335, 1980.

    PubMed  CAS  Google Scholar 

  125. Ojo E, Wigzell H: Natural killer cells may be the only cells in normal mouse lymphoid populations endowed with cytolytic ability for antibody-coated tumor target cells. Scand J Immunol 7: 297–306, 1978.

    PubMed  CAS  Google Scholar 

  126. Landazuri MO, Silva A, Alvarez J, Herberman RB: Evidence that natural cytotoxicity and antibody dependent cellular cytotoxicity are mediated in humans by the same effector cell populations. J Immunol 123: 252–258, 1979.

    PubMed  Google Scholar 

  127. Kay HD, Bonnard GD, West WH, Herberman RB: A functional comparison of human Fc-receptor-bearing lymphocytes active in natural cytotoxicity and antibody-dependent cellular cytotoxicity. J Immunol 118: 2058–2066, 1977.

    PubMed  CAS  Google Scholar 

  128. Ortaldo JR, Pestka S, Slease RB, Rubenstein M, Herberman RB: Augmentation of human K-cell activity with interferon. Scand J Immunol 12: 365–369, 1980.

    PubMed  CAS  Google Scholar 

  129. Djeu JY, Heinbaugh JA, Holden HT, Herberman RB: Augmentation of mouse natural killer cell activity by interferon and interferon inducers. J Immunol 122: 175–181, 1979.

    PubMed  CAS  Google Scholar 

  130. Gidlund M. Örn A, Wigzell H, Senik A, Gresser I: Enhanced NK cell activity in mice injected with interferon and interferon inducers. Nature 223: 259–261, 1978.

    Google Scholar 

  131. Herberman RB, Ortaldo JR, Bonnard GD: Augmentation by interferon of human natural and antibody-dependent cell-mediated cytotoxicity. Nature 277: 221–223, 1979.

    PubMed  CAS  Google Scholar 

  132. Santoli D, Trinchieri G, Koprowski H: Cell-mediated cytotoxicity against virus-infected target cells in humans. II. Interferon induction and activation of natural killer cells. J Immunol 121: 532–538, 1978.

    PubMed  CAS  Google Scholar 

  133. Timonen T, Ortaldo JR, Herberman RB: Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med 153: 569–582, 1981.

    PubMed  CAS  Google Scholar 

  134. Herberman RB, Ortaldo JR, Djeu JY, Holden HT, Jett J, Lang NP, Pestka S: Role of interferon in regulation of cytotoxicity by natural killer cells and macrophages. Ann NY Acad Sci 350: 63–71, 1980.

    PubMed  CAS  Google Scholar 

  135. Herberman RB, Ortaldo JR, Rubinstein M, Pestka S: Augmentation of natural and antibody-dependent cell-mediated cytotoxicity by pure human leukocyte interferon. J Clin Immunol (in press).

    Google Scholar 

  136. Herberman RB, Brunda MJ, Cannon GB, Djeu JY, Nunn-Hargrove ME, Jell JR, Ortaldo JR, Reynolds C, Riccardi C, Santoni A: Augmentation of natural killer (NK) cell activity by interferon-inducers. In: Augmenting agents in cancer therapy. Current status and future prospects. Hersh E, Mastrangelo M (eds). New York: Raven Press (in press).

    Google Scholar 

  137. Santoni A, Riccardi C, Barlozzari T, Herberman RB: Inhibition as well as augmentation of mouse NK activity by pyran copolymer and adriamycin. In: Natural cell-mediated immunity against tumors, Herberman RB (ed). New York: Academic Press, 1980, pp 753–763.

    Google Scholar 

  138. Strausser HR, Humes JL: Prostaglandin synthesis inhibition: effect on bone changes and sarcoma tumor induction in BALB/c mice. Int J Cancer 15: 724–730, 1975.

    PubMed  CAS  Google Scholar 

  139. Lynch NR, Castes M. Astoin M, Salomon JC: Mechanism of inhibition of tumour growth by aspirin and indomethacin. Brit J Cancer 38: 503–512, 1978.

    PubMed  CAS  Google Scholar 

  140. Lupulescu A: Enhancement of carcinogenesis by prostaglandins. Nature 272: 634–636, 1978.

    PubMed  CAS  Google Scholar 

  141. Plescia OJ, Smith AH, Grinwich K: Subversion of immune system by tumor cells and role of prostaglandins. Proc Natl Acad Sci 72: 1848–1851, 1975.

    PubMed  CAS  Google Scholar 

  142. Lynch NR, Salomon JC: Tumor growth inhibition and potentiation of immunotherapy by indomethacin in mice. J Natl Cancer Inst 62: 117–125, 1979.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Herberman, R.B. (1982). Role of Natural Killer (NK) Cells in Resistance to Tumors. In: Humphrey, G.B., Grindey, G.B., Dehner, L.P., Acton, R.T., Pysher, T.T. (eds) Pancreatic Tumors in Children. Cancer Treatment and Research, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7615-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7615-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7617-7

  • Online ISBN: 978-94-009-7615-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics