Skip to main content

Surface tension and alveolar changes during ventilation

  • Chapter
Book cover Applied Physiology in Clinical Respiratory Care

Part of the book series: Developments in Critical Care Medicine and Anaesthesiology ((DCCA,volume 1))

  • 22 Accesses

Abstract

The clinical experience of the last 20 years has amply demonstrated the importance of acute pulmonary failure and the need for respiratory support in critically ill patients [8, 43, 44]. The importance of pulmonary failure and respiratory care have been emphasized even when the patient’s primary disease does not originate in the lungs. This became apparent to me over 15 years ago while working in a clinical research unit at the Walter Reed Army Hospital. Although the indication for patient admission to this unit was hemodynamic failure (shock), 3/4 of the patients required mechanical ventilatory support, and a direct correlation between severity of pulmonary failure and mortality was demonstrated [7]. Further clinical research activities by United States Military Medical teams functioning in forward hospitals during the Viet Nam conflict confirmed the importance of pulmonary failure in patients suffering major trauma even when the lung was not directly injured [51, 52]. The result of numerous clinical observations such as these provided a powerful impetus to the laboratory study of normal lung function and the impact of disease on the lung. Much has been learned at the bedside and in the laboratory; and as a result the pulmonary care of acutely and critically ill patients has been immensely improved. On the other hand, it may be argued that one of the most important things we have learned both in the laboratory and at the bedside is the depth of our ignorance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert RK, Lakshminarayan S, Butler J: Increased surface tension favors pulmonary edema. Clin Res 26: 134A, 1978.

    Google Scholar 

  2. Anthonisen NR: Effect of volume with volume history of the lung on pulmonary shunt flow. Am J Physiol 207: 235–238, 1964.

    CAS  PubMed  Google Scholar 

  3. Assimacopoulos A, Guggenheim R, Kapanci Y: Changes in alveolar capillary configuration at different levels of lung inflation in the rat: an ulstructural and morphometric study. Lab Invest 34: 10–22, 1976.

    CAS  PubMed  Google Scholar 

  4. Avery MG, Mead J: Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child 97:517 –523, 1969.

    Google Scholar 

  5. Bachofen H, Gehr P, Weibel ER: Alterations of mechanical properties and morphology in excised rabbit lungs rinsed with a detergent. J Appl Physiol (Respir Environ Exerc Physiol) 47: 1002–1010, 1979.

    CAS  Google Scholar 

  6. Boyle J, Englestein ES, Sinoway LI: Mean air space diameter, lung surface area and alveolar surface tension. Respiration 34:241– 249, 1977.

    Article  PubMed  Google Scholar 

  7. Bredenberg CE, James PM, Collins J, Anderson RW, Martin AM, Hardaway RM: Respiratory failure in shock. Ann Surg 169: 392–403, 1969.

    Article  CAS  PubMed  Google Scholar 

  8. Bredenberg CE: Acute respiratory distress. Surg Clin North Am 54: 1043–1066, 1974.

    CAS  PubMed  Google Scholar 

  9. Bredenberg CE, Webb WR: Experimental pulmonary edema: the effect of unilateral PEEP on the accumulation of lung water. Ann Surg 189: 433–438, 1979.

    CAS  PubMed  Google Scholar 

  10. Brunderman I, Sowers K, Hamilton WK, Tooley WH, Buther J: Effective surface tension on circulation in excised lungs of dogs. J Appl Physiol 19: 707–712, 1964.

    Google Scholar 

  11. Clements JA: Dependence of pressure volume characteristics of lungs on intrinsic surface active material. Am J Physiol 187: 592, 1956.

    Google Scholar 

  12. Clements JA, Hostead RF, Johasoa RP, Grikotz I: Pulmonary surface tension and alveolar stability. J Appl Physiol 16: 444–450, 1961.

    CAS  PubMed  Google Scholar 

  13. Clements JA: Pulmonary edema and permeability of alveolar membranes. AM A Arch Environ Health 2: 280–283, 1961.

    CAS  Google Scholar 

  14. Daly BDT, Parks GE, Edmonds CH, Hibbs CW, Norman JC: Dynamic alveolar mechanics as studied by video microscopy. Respir Physiol 24: 217–232, 1975.

    Article  CAS  PubMed  Google Scholar 

  15. D’Angelo E: Local alveolar size and transpulmonary pressure in situ on isolated lungs. Respir Physiol 14: 251, 1972.

    Article  PubMed  Google Scholar 

  16. Dunnil MS: Effect of lung inflation on alveolar surface area in the dog. Nature (London) 214: 1013, 1967.

    Article  Google Scholar 

  17. Flicker E, Lee JS: Equilibrium of force of subpleural alveoli: implications to lung mechanics. J Appl Physiol 36: 366 - 374, 1974.

    CAS  PubMed  Google Scholar 

  18. Forrest JB: The effects of changes in lung volume on the size and shape of alveoli. J Physiol (London) 210–533, 1970.

    Google Scholar 

  19. Forrest JB: Lung tissue plasticity: morphometric analysis of anisotropic strain in liquid filled lungs. Respir Physiol 27: 223–239, 1976.

    Article  CAS  PubMed  Google Scholar 

  20. Fung YC: Does the surface tension make the lung inherently unstable? Circ Res 37:497– 502, 1975.

    Google Scholar 

  21. Gil J, Weibel ER: Morphological study of pressure-volume hysteresis in rat lungs fixed by vascular perfusion. Respir Physiol 15: 190–213, 1972.

    Article  CAS  PubMed  Google Scholar 

  22. Gil J, Bachoren H, Gehr P, Weibel ER: Alveolar volume-surface area relation in air- and saline-filled lungs fixed by vascular perfusion. J Appl Physiol (Respir Environ Exerc Physiol) 47: 990–1001, 1979.

    CAS  Google Scholar 

  23. Guyton AC, Taylor AE, Drake RE, Parker JC: Dynamics of subatmospheric pressure in the pulmonary interstitial fluid. Ciba Found Symp 38: 77–100, 1976.

    PubMed  Google Scholar 

  24. Hildebrandt J: Lung surfactant mechanics: some unresolved problems. In: Davies DG, Barnes CD (eds) Regulation of ventilation and gas exchange. New York: Academic Press, 1978, pp 261–297.

    Chapter  Google Scholar 

  25. Hildebran JN, Goerke J, Clements J A: Pulmonary surface film stability and composition. J Appl Physiol 47: 604–611, 1979.

    CAS  PubMed  Google Scholar 

  26. Hopewell PC: Failure of positive and end-expiratory pressure to decrease lung water content in alloxan-induced pulmonary edema. Am Rev Respir Dis 120: 813–819, 1979.

    CAS  PubMed  Google Scholar 

  27. Hoppin FG, Hildebrandt J: Mechanical properties of the lung. In: West JB (ed) Bioengineering aspects of the lung. New York: Marcel Dekker, 1977, pp 83 –162.

    Google Scholar 

  28. Horn LW: Evaluation of some alternative mechanisms for interface-related stress relaxation in lung. Respir Physiol 34: 345–357, 1978.

    Article  CAS  PubMed  Google Scholar 

  29. Hughes JMB: Pulmonary circulation and fluid balance. In: Widdicombe JG (ed) International review of physiology: respiratory physiology II. Baltimore: University Park Press, 1977, pp 135–183.

    Google Scholar 

  30. King RJ: Pulmonary surface active material: basic concepts. Perinat Dev Med 14: 3–11, 1978.

    Google Scholar 

  31. Klingele TG, Staub NC: Alveolar shape changes with volume and isolated are filled lobes of cat lung. J Appl Physiol 28: 411, 1970.

    CAS  PubMed  Google Scholar 

  32. Lloyd TC, Wright DW: Pulmonary vascular resistance and vascular transmural gradient. J Appl Physiol 15: 241–245, 1960.

    PubMed  Google Scholar 

  33. Macklem PT: Respiratory mechanics. Annu Rev Physiol 40: 157–184, 1978.

    Article  CAS  PubMed  Google Scholar 

  34. Macklin CC: Alveoli mammalian lung: anatomical study with clinical correlation. Proc Inst Med (Chicago 1878 ), 1950.

    Google Scholar 

  35. Mead J: Mechanical properties of lungs. Physiol Rev 41:281 –330, 1961.

    Google Scholar 

  36. Mead J, Takishima T, Leith D: Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28: 596–608, 1970.

    CAS  PubMed  Google Scholar 

  37. Nakahara K, Snashall PD, Staub NC: Isogravimetric microvascular pressure in the isolated, perfused dog lung lobe: an estimate of perimicrovascular tissue pressure. J Physiol 265: 34P–35P, 1977.

    CAS  PubMed  Google Scholar 

  38. Nielson D, Olsen DB: The role of alveolar recruitment and derecruitment in pressure-volume hysteresis in lungs. Respir Physiol 32: 63–77, 1978.

    Article  CAS  PubMed  Google Scholar 

  39. Nieman GF, Clark WR Jr, Wax SD, Webb WR: The effect of smoke inhalation on pulmonary surfactant. Ann Surg 191: 45–55, 1980.

    Article  Google Scholar 

  40. Nieman GF, Bredenberg CE, Clark WR, West NR: Alveolar function following surfactant deactivation. J Appl Physiol 51: 895–904, 1981.

    CAS  PubMed  Google Scholar 

  41. Pattle RE: Properties, function and origin of the alveolar lung layer. Proc R Soc Lond 148: 217 - 240, 1958.

    Article  CAS  PubMed  Google Scholar 

  42. Pattle RE: The relation between surface tension and area in the alveolar lining film. J Physiol 269: 591–604, 1977.

    CAS  PubMed  Google Scholar 

  43. Pontoppidan H, Laver MB, Geffin B: Acute respiratory failure in the surgical patient. Adv Surg 4: 163–254, 1970.

    CAS  PubMed  Google Scholar 

  44. Pontoppidan H, Geffin B, Lowenstein E: Acute respiratory failure in the adult. N Engl J Med medical progress series. Boston: Little, Brown and Company, 1973.

    Google Scholar 

  45. Radford EP Jr, McLaughlin M: Dependence of lung mechanical properties on anatomical relationship with terminal air units. Fed Proc 15: 147, 1956.

    Google Scholar 

  46. Reifenrath R: The significance of alveolar geometry and surface tension in the respiratory mechanics of the lung. Respir Physiol 24: 115–137, 1975.

    Article  CAS  PubMed  Google Scholar 

  47. Ryan RF, Liau DF, Loomis Bell AL, Hashim SA, Barrett CR: Correlation of lung compliance and quantities of surfactant phospholipids after acute alveolar injury from N-nitroso-N- methylurethane in the dog. Am Rev Respir Dis 123: 200–204, 1981.

    CAS  PubMed  Google Scholar 

  48. Sanderson RJ, Paul GW, Vatter AE, Filley GF: Morphologic and physical basis for lung surfactant action. Respir Physiol 27: 379–392, 1976.

    Article  CAS  PubMed  Google Scholar 

  49. Scarpelli EM: The surfactant system of the lung. Int Anesthesiol Clin 15: 19–60, 1977.

    Article  CAS  PubMed  Google Scholar 

  50. Schurch S, Goerke A, Clements J A: Direct determination of volume- and time-dependence of alveolar surface tension in excised lungs. Proc Natl Acad Sci USA 75: 3417–3421, 1978.

    Article  CAS  PubMed  Google Scholar 

  51. Simmons RL, Heisterkamp CA III, Collins J A, Bredenberg CE, Millis DE, Martin AM Jr: Respiratory insufficiency in combat casualties: IV. Hypoxemia during convalescence. Ann Surg 170: 53–62, 1969.

    Article  CAS  PubMed  Google Scholar 

  52. Simmons RL, Heisterkamp CA III, Collins J A, Bredenberg CE, Martin AM: Acute pulmonary edema in battle casualties. J Trauma 9: 760–775, 1969.

    Article  CAS  PubMed  Google Scholar 

  53. Story WF, Staub SC: Ventilation of terminal air. J Appl Physiol 17: 319, 1962.

    Google Scholar 

  54. Thurlbeck WM: Structure of lungs. Respiration physiology II. Int Rev Physiol 14: 1977, Baltimore, pp 1–36.

    Google Scholar 

  55. Weibel EP: Morphometries. In: Fenn WO, Rahn H (eds) Handbook of physiology, section 3: Respiration, vol 2. Washington DC: American Physiological Society, 1965, pp 288.

    Google Scholar 

  56. Wilson TA: Parenchymal mechanics at the alveolar level. Fed Proc 38: 7–10, 1979.

    CAS  PubMed  Google Scholar 

  57. Wilson TA: Relations among recoil pressure, surface area, and surface tension in the lung. J Appl Physiol 5 05:921 –920, 1981.

    Google Scholar 

  58. Wilson TA: Effect of alveolar wall shape on alveolar water stability [letter to the editor]. J Appl Physiol 501: 222–225, 1981.

    Google Scholar 

  59. Woodson RD, Roab DE, Ferguson DJ: Pulmonary hemodynamics following acute atelectasis. Am J Physiol 205: 53–56, 1963.

    CAS  PubMed  Google Scholar 

  60. Wyszogrodski I, Taeusch HW, Kyei-Aboagye A, Avery ME: Mechanical regulation of alveolar surfactant in adult cats: the effects of hyperventilation and end-expiratory pressure in vivo. Chest 67: 15S–16S, 1975.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bredenberg, C.E. (1982). Surface tension and alveolar changes during ventilation. In: Prakash, O. (eds) Applied Physiology in Clinical Respiratory Care. Developments in Critical Care Medicine and Anaesthesiology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7567-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7567-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7569-9

  • Online ISBN: 978-94-009-7567-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics