Finite Strain J2 Deformation Theory

  • J. W. Hutchinson
  • K. W. Neale


A finite strain version of the J 2 deformation theory of plasticity is given. The material model is an isotropic, nonlinearly elastic solid. The range of states is investigated for which the equations governing incremental responses are elliptic.


Deformation Theory Finite Strain Strain Energy Function Secant Modulus Strong Ellipticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Hutchinson and K. W. Neale, Sheet necking — II. Time-independent behavior, in Mechanics of Sheet Metal Forming (D. P. Koistinen and N-M. Wang, eds.), Plenum, 1978, p. 127.Google Scholar
  2. 2.
    J. W. Hutchinson and V. Tvergaard, Surface instabilities on statically strained plastic solids, International Journal of Mechanical Sciences 22 (1980), 339.MATHCrossRefGoogle Scholar
  3. 3.
    J. L. Bassani, D. Durban and J. W. Hutchinson, Bifurcations at a spherical hole in an infinite elastoplastic medium, Mathematical Proceedings of the Cambridge Philosophical Society 87 (1980), 339.MathSciNetMATHGoogle Scholar
  4. 4.
    N. Triantafyllidis, Bifurcation phenomena in pure bending, J. Mech. Phys. Solids. 28 (1980), 221.MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    B. Budiansky, A reassessment of deformation theories of plasticity, Journal of Applied Mechanics 26 (1959), 259.MathSciNetGoogle Scholar
  6. 6.
    R. Hill, Constitutive inequalities for isotropic elastic solids under finite strain, Proceedings of the Royal Society of London A314 (1970), 457.Google Scholar
  7. 7.
    R. Hill, On constitutive inequalities for simple materials, Journal of the Mechanics and Physics of Solids 16 (1968), 229, 315.ADSMATHCrossRefGoogle Scholar
  8. 8.
    K. W. Neale, Phenomenological constitutive laws in finite plasticity, Solid Mechanics Archives 6 (1981), 79.MATHGoogle Scholar
  9. 9.
    V. Tvergaard, A. Needleman and K. K. Lo, Flow localization in the plane strain tensile test, Journal of the Mechanics and Physics of Solids 29 (1981), 115.ADSMATHCrossRefGoogle Scholar
  10. 10.
    S. Stören and J. R. Rice, Localized necking in thin sheets, Journal of the Mechanics and Physics of Solids 23 (1975), 421.ADSMATHCrossRefGoogle Scholar
  11. 11.
    J. E. Fitzgerald, A tensorial Hencky measure of strain and strain rate for finite deformations, in Developments in Theoretical and Applied Mechanics (J. E. Stoneking, ed.), Vol 10, 1980, p. 635.Google Scholar
  12. 12.
    R. Hill, Acceleration waves in solids, Journal of the Mechanics and Physics of Solids 10 (1962), 1.MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    R. Hill, On the theory of plane strain in finitely deformed compressible materials, Mathematical Proceedings of the Cambridge Philosophical Society 86 (1979), 161.MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    R. Hill and J. W. Hutchinson, Bifurcation phenomena in the plane tension test, Journal of the Mechanics and Physics of Solids 23 (1975), 239.MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    J. K. Knowles and E. Sternberg, On the ellipticity of the equations of nonlinear elastostatics for a special material, Journal of Elasticity 5 (1975), 341.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    J. R. Rice, The localization of plastic deformations, in Theoretical and Applied Mechanics (W. T. Koiter, ed.), North-Holland, 1976, p. 207.Google Scholar
  17. 17.
    K. N. Sawyers and R. S. Rivlin, Instability of an elastic material, International Journal of Solids and Structures 9 (1973), 607.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    K. N. Sawyers and R. S. Rivlin, On the speed of propagation of waves in a deformed elastic material, Journal of Applied Mathematics and Physics (ZAMP) 28 (1977), 1045.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    K. N. Sawyers and R. S. Rivlin, A note on the Hadamard criterion for an incompressible isotropic elastic material, Mechanics Research Communications 5 (1978), 211.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague/Boston/London 1981

Authors and Affiliations

  • J. W. Hutchinson
    • 1
  • K. W. Neale
    • 2
  1. 1.Division of Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Department of Civil EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations