Skip to main content

Pacemaker Mechanisms

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 17))

Abstract

Our hosts, Drs. Bouman and Jongsma, have asked me to summarize the different mechanisms by which spontaneous activity might arise in a cluster of cells, adding that, in their view, a cluster of cells must be taken as the model rather than the single cell to allow for the possible role of reentry as a mechanism for spontaneous activity. In response to their suggestion, I will point out a few ways in which a cell or a collection of cells could serve as a pacemaker and consider some ways in which the rate of such a pacemaker might be varied.

Supported by a grant from The National Heart Lung and Blood Institute (HL 14899).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antzelevitch, C., Jalife, J. and Moe, G.K.: Characteristics of reflection as a mechanism of reentrant arrythmias and its relationship to parasystole. Circulation, 61: 182–191, 1980.

    PubMed  CAS  Google Scholar 

  • Cranefield, P.F.: The conduction of the cardiac impulse. The slow response and cardiac arrhythmias. Mount Kisco, N.Y., Futura, pp. 185, 1975.

    Google Scholar 

  • Cranefield, P.F.: Action potentials, after potential s and arrhythmias. Circ. Res., 41: 415–423, 1977.

    PubMed  CAS  Google Scholar 

  • Cranefield, P.F.: Does spontaneous activity arise from phase 4 depolarization or from triggering? In: The Sinus Node. Structure, Function and Clinical Relevance, Bonke, F.I.M., ed., Martinus Nijhoff, The Hague, pp. 348–336, 1978.

    Google Scholar 

  • Draper, M.H. and Weidmann, S.: Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol., 115: 74–94, 1951.

    PubMed  CAS  Google Scholar 

  • Gadsby, D.C., Wit, A.L. and Cranefield, P.F.: Overdrive suppression of triggered atrial tachycardia arising in the canine coronary sinus. (Abstr.) Amer. J. Cardiol., 43: 374, 1979..

    Google Scholar 

  • Joyner, R.W., Westerfield, M. and Moore, J.W.: Effects of cellular geometry on current flow during a propagated action potential. Biophysical J., 31: 183–194, 1980..

    Article  CAS  Google Scholar 

  • Mayer, A.G.: Rhythmical pulsation in Scyphomedusae: II. In: Papers from the Tortugas Laboratory of the Carnegie Institution of Washington. I: 113–131 (Carnegie Institution of Washington, Publication No. 102, part VII), 1908.

    Google Scholar 

  • Mines, G.R.: On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans. Roy. Soc. Can. Ser. 3, sec. 4, 8: 43–52, 1914.

    Google Scholar 

  • Ramon, F. and Moore, J.W.: Propagation of action potentials in squid giant axons. Repetitive firing at regions of membrane inhomogeneities. J. Gen. Physiol., 73: 595–603, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Trautwein, W. and Zink, K.: Ueber Membran und Aktionspotentials einzelner Myokardfasern des Kalt und Warmblueterherzens. Pflueger’s Arch., 256: 68–84, 1952.

    Article  Google Scholar 

  • Vassalle, M.: Cardiac pacemaker potentials at different extra- and intracellular K concentrations. Amer. J. Physiol., 208: 770–775, 1965.

    PubMed  CAS  Google Scholar 

  • Vassalle, M., Cummins, M., Castro, C. and Stuckey, J.H.: The relationship between overdrive suppression and overdrive excitation in ventricular pacemakers in dogs. Circ. Res., 38: 367–374, 1975.

    Google Scholar 

  • Vassalle, M., Knob, R.E., Cummins, M., Lara, G.A., Castro, C. and Stuckey, J.H.: An analysis of fast idioventricular rhythm in the dog. Circ. Res., 41: 218–226, 1977.

    PubMed  CAS  Google Scholar 

  • West, T.C.: Effects of chronotropic influences on subthreshold oscillations in the sino-atrial node. In: The Specialized Tissues of the Heart, Paes de Carvalho, A., de Mello, W.C. and Hoffman, B.F., eds., Amsterdam, Elsevier, pp. 81–94, 1961.

    Google Scholar 

  • Wit, A.L. and Cranefield, P.F.: Triggered and automatic activity in the canine coronary sinus. Circ. Res., 41: 435–455, 1977.

    Google Scholar 

  • Wit, A.L. and Cranefield, P.F.: Reentrant excitation as a cause of cardiac arrhythmias. Amer. J. Physiol., 235: H1–H17, 1978.

    PubMed  CAS  Google Scholar 

  • Wit, A.L., Hoffman, B.F. and Cranefield, P.F.: Slow conduction and reentry in the ventricular conduction system. I. Return extrasystole in canine Purkinje fibers. Circulation Res., 30: 1–10, 1972.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Cranefield, P.F. (1982). Pacemaker Mechanisms. In: Bouman, L.N., Jongsma, H.J. (eds) Cardiac Rate and Rhythm. Developments in Cardiovascular Medicine, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7535-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7535-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7537-8

  • Online ISBN: 978-94-009-7535-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics