The significance of the biological sulfur cycle in rice production

  • J. R. Freney
  • V. A. Jacq
  • J. F. Baldensperger
Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 5)


Rice is one of the world’s most important food crops, forming nearly 20 percent of the world’s food grain production [226]. It is grown on 137 × 106 ha throughout the world but more than 90 percent of all rice grain produced is grown in Asia where it is the dominant food crop.


Rice Plant Rice Field Paddy Soil Hydrogen Sulfide Sulfur Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acharya, N. 1973 A radiotracer investigation of the effect of sulphate and phosphate application on paddy. Indian J. Agric. Chem. 6, 23.Google Scholar
  2. 2.
    Aiyar, S.P. 1945 A chlorosis of paddy (Oryza sativa L.) due to sulphate deficiency. Current Sci. 14, 10.Google Scholar
  3. 3.
    Alam, S.M. and Karim, M. 1972 Effect of sulphur on S uptake and dry matter yield of rice plant with respect to soil sulphur. Pakistan J. Sci. Res. 24, 222.Google Scholar
  4. 4.
    Allam, A.I. and Hollis, J.P. 1972 Sulfide inhibition of oxidases in rice roots. Phytopathology 62, 634–639.Google Scholar
  5. 5.
    Allam, A.I., Pitts, G. and Hollis, J.P. 1972 Sulfide determination in submerged soils with an ion-selective electrode. Soil Sci. 114, 456–467.Google Scholar
  6. 6.
    Andai, R., Bhuvaneswari, K. and Subba Rao, N.S. 1956 Root exudate of paddy. Nature (London) 178, 1063–1064.Google Scholar
  7. 7.
    Aomine, S. 1962 A review of research on redox potentials of paddy soils in Japan. Soil Sci. 94, 6–13.Google Scholar
  8. 8.
    Araki, M. 1955 Studies on sulfur deficiency symptoms of the rice plant. Brief records. J. Sci. Soil Manure Japan 1, 80–85.Google Scholar
  9. 9.
    Armstrong, W. 1967 The use of polarography in the assay of oxygen diffusion from roots in anaerobic media. Physiol. Plant 20, 533–540.Google Scholar
  10. 10.
    Armstrong, W. 1969 Rhizosphere oxidation in rice; an analysis of inter-varietal difference in oxygen flux from the roots. Physiol. Plant 22, 296–303.Google Scholar
  11. 11.
    Asami, T. and Takai, Y. 1963 Formation of methyl mercaptan in paddy soils II Soil Sci. Plant Nut. 9, 23–27.Google Scholar
  12. 12.
    Atkins, J.G., Beachell, H.M. and Crane, L.E. 1956 Reaction of rice varieties to straighthead. Texas Agric. Exp. Stn. Prog. Rep. 1865. 2p.Google Scholar
  13. 13.
    Ayotade, K.A. 1977 Kinetics and reactions of hydrogen sulphide in solution of flooded rice soils. Plant and Soil 46, 381–389.Google Scholar
  14. 14.
    Baalsrud, K. and Baalsrud, K.S. 1954 Studies on Thiobacillus denitrificans. Arch. Mikrobiol. 20, 34–62.Google Scholar
  15. 15.
    Baas-Becking, L.G.M. and Ferguson Wood, E.J. 1955 Biological processes in the estuarine environment. I. and II, Ecology of the sulphur cycle. Proc. Koninkl. Nederl. Akademie Van Westenschappen, Amsterdam, 58, ser. B, 160–181.Google Scholar
  16. 16.
    Baas-Becking, L.G.M., Kaplan, I.R. and Moore, D. 1960 Limits of the natural environment in term of pH and Eh. J. Geol. 68, 243–284.Google Scholar
  17. 17.
    Baba, I. 1955 Varietal differences of the rice plant in relation to the resisting capacity to root-rot disease induced by hydrogen sulphide, and a convenient method to test them. Proc. Crop Sci. Soc. Jap. 23, 167–168.Google Scholar
  18. 18.
    Baba, I. 1958 Nutritional studies on the occurrence of Hehninthosporium leaf spot and `Akiochi’ of the rice plant. Bull. Nat. Inst. Agric. Ser. D. (Plant Physiol. Genet. Crops Gen.) Jap. 7, 1–157.Google Scholar
  19. 19.
    Baba, I., Inada, K. and Tajima, K. 1965 Mineral nutrition and the occurrence of physiological diseases. In: Proceedings of a symposium on the mineral nutrition of the rice plant. Published for the International Rice Research Institute by Johns Hopkins Press, Baltimore, Maryland. 494 pp.Google Scholar
  20. 20.
    Badziong, W., Thauer, R.K. and Zeikus, J.G. 1978 Isolation and character­ization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Microbiol. 116, 41–49.Google Scholar
  21. 21.
    Badziong, W., Ditter, B. and Thauer, R.K. 1979 Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg) growing on hydrogen and sulfate as sole energy sources. Arch. Microbiol. 123, 301–305.Google Scholar
  22. 22.
    Bdgander, L.E. 1980 Bacterial cycling of sulfur in a Baltic sediment: an in situ study in closed systems. Geomicrobiol. J. 2, 141–159.Google Scholar
  23. 23.
    Baldensperger, J.F. 1976 Use of respirometry to evaluate sulphur oxidation in soils. Soil Biol. Biochem. 8, 423–427.Google Scholar
  24. 24.
    Baldensperger, J.F. 1981 Short-term variations of microbiological and physicochemical parameters in submersion water over a rice field. Ann. Microbiol. Inst. Pasteur Paris. 132 B, 101–122.Google Scholar
  25. 25.
    Baldensperger, J.F. and Garcia, J-L. 1975 Reduction of oxidized inorganic nitrogen compounds by a new strain of Thiobacillus denitrificans. Arch. Microbiol. 103, 31–36.Google Scholar
  26. 26.
    Banwart, W.L. and Bremner, J.M. 1975 Formation of volatile sulfur com­pounds by microbial decomposition of sulfur-containing amino acids in soils. Soil Biol. Biochem. 7, 359–364.Google Scholar
  27. 27.
    Banwart, W.L. and Bremner, J.M. 1976 Volatilization of sulfur from unamended and sulfate-treated soils. Soil Biol. Biochem. 8, 19–22.Google Scholar
  28. 28.
    Banwart, W.L. and Bremner, J.M. 1976 Evolution of volatile sulfur com­pounds from soils treated with sulfur-containing organic materials. Soil Biol. Biochem. 8, 439–443.Google Scholar
  29. 29.
    Barber, D.A., Ebert, M. and Evans, N.T.S. 1962 The movement of 1802 through barley and rice plants. J. Exp. Bot. 13, 397–403.Google Scholar
  30. 30.
    Bardsley, C.E. 1960 Absorption of sulfur from organic and inorganic sources by bush beans. Agron. J. 52, 485–486.Google Scholar
  31. 31.
    Bauzon, D. and Diem, H.G., reported by Dommergues, Y. 1978 Microbiol activity of microenvironments in paddy soils. In: Environmental Biogeo­chemistry and Geomicrobiology. Krumbein, W.E. (ed.), Ann Arbor Science, Michigan, 1, 245–253.Google Scholar
  32. 32.
    Beaton, J.D. 1966 Sulfur requirements of cereals, tree fruits, vegetables and other crops. Soil Sci. 101, 267–282.Google Scholar
  33. 33.
    Beaton, J.D. and Fox, R.L. 1971 Production, marketing and use of sulfur products. In: Fertilizer Technology and Use, pp. 335–379. Olson, R.A., Army, T.J., Hanway, J.J. and Kilmer, V.J. (eds.), Soil Sci. Soc. Am. Inc. Madison, Wisconsin.Google Scholar
  34. 34.
    Beye, G. 1973 Acidification of mangrove soils after empoldering in lower Casamance. Effects of the type of reclamation used. In: Proc. Int. Symp. Acid Sulphate Soils 2, pp. 359–372. Dost, H. (ed.), Int. Inst. Land Reclamation and Improvement. Wageningen, The Netherlands.Google Scholar
  35. 35.
    Beye, G., Touré, M. and Arial, G. 1975 Acid sulfate soils of West Africa: problems of their management for agricultural use. International Rice Research Conference, IRRI, Los Banos, Philippines, 10 pp.Google Scholar
  36. 36.
    Bhan, C. and Tripathi, B.R. 1973 The forms and contents of sulphur in some soils of U.P. J. Indian Soc. Soil Sci. 21, 499–504.Google Scholar
  37. 37.
    Biederbeck, V.O. 1978 Soil organic sulfur and fertility. In: Soil Organic Matter, pp. 274–310. Schnitzer, M. and Khan, S.U. (eds.), Elsevier, Amster­dam.Google Scholar
  38. 38.
    Billen, G. 1975 Nitrification in the Scheldt estuary (Belgium and The Nether­lands). Estuar. Coasts Mar. Sci. 3, 79–89.Google Scholar
  39. 39.
    Billen, G. 1976 The dependence of the various kinds of microbial metabolism on the redox state of the medium. Comm. SCOR/UNESCO Workshop on the Biogeochemistry of Estuarine Sediments. Melreux, 29 Nov-3 Dec, 254–261.Google Scholar
  40. 40.
    Blackburn, T.H., Kleiber, P. and Fenchel, T. 1975 Photosynthetic sulfide oxidation in marine sediments. Oikos 26, 101–108.Google Scholar
  41. 41.
    Blair, G.J. 1971 The sulphur cycle. J. Aust. Inst. Agric. Sci. 37, 113–121.Google Scholar
  42. 42.
    Blair, G.J., Mamaril, C.P. and Momuat, E.O. 1978 The sulphur nutrition of rice. Contr. Centr. Res. Inst. Agric. Bogor. No. 42, 13 pp.Google Scholar
  43. 43.
    Blair, G.J., Mamaril, C.P., Pangerang Umar, A., Momuat, E.O. and Momuat, C. 1979 Sulfur nutrition of rice. I. A survey of soils of South Sulawesi, Indonesia. Agron. J. 71, 473–477.Google Scholar
  44. 44.
    Blair, G.J., Momuat, E.O. and Mamaril, C.P. 1979 Sulfur nutrition of rice. II. Effect of source and rate of S on growth and yield under flooded con­ditions. Agron. J. 71, 477–480.Google Scholar
  45. 45.
    Bloomfield, C. 1969 Sulfate reduction in waterlogged soils. J. Soil Sci. 20, 207–221.Google Scholar
  46. 46.
    Bloomfield, C. and Coulter, J.K. 1973 Genesis and management of acid sulfate soils. Adv. Agron. 25, 265–326.Google Scholar
  47. 47.
    Bockris, J.O.M. and Reddy, A.K.N. 1970 Modern Electrochemistry. Plenum Press, N.Y. 1432 pp.Google Scholar
  48. 48.
    Boulègue, J. 1976 Equilibres dans le système H2 S-Ss colloide-H2 O. C.R. Acad. Sci. Paris 283, sér. D. 591–594.Google Scholar
  49. 49.
    Boulègue, J. 1979 Evolution des composés soufrés dans la sédimentation récente. Coll. Int. C.N.R.S. 293, Biogéochimie de la matière organique à l’interface eau-sédiment marin, 93–101.Google Scholar
  50. 50.
    Boulègue, J. and Michard, G. 1978 Constantes de formation des ions poly-sulfurés S6 , Si-et Si-en phase aqueuse, J. Fr. Hydrol. 9, 27–34.Google Scholar
  51. 51.
    Boulègue, J. and Michard, G. 1979 Sulfur speciations and redox processes in reducing environments. In: Chemical modeling in aqueous systems. Jenne, E.A. (ed.), ACS Symposium series, 93, 25–50.Google Scholar
  52. 52.
    Boulègue, J., Ciabrini, J-P., Fouillac, C., Michard, G. and Ouzounian, G. 1979 Field titrations of dissolved sulfur species in anoxic environments. Geo­chemistry of Puzzichello waters (Corsica-France). Chemical Geology 25, 19­29.Google Scholar
  53. 53.
    Boureau, M. 1977 Application de la chromatographie en phase gazeuse à l’étude de l’exsudation racinaire du riz. Cah ORSTOM Sér. Biol. 12, 75–81.Google Scholar
  54. 54.
    Brammer, H. 1978 Rice soils of Bangladesh, In: IRRI, Soils and Rice, pp. 35–55. Los Banos, Philippines.Google Scholar
  55. 55.
    Breck, W.G. 1972 Redox potential by equilibrium. J. Mar. Res. 30, 121–139.Google Scholar
  56. 56.
    Bremner, J.M. 1977 Role of organic matter in volatilization of sulfur and nitrogen from soils. In: Proc. Symp. Soil Organic Matter Studies. Braun­schweig, Federal Republic of Germany, 1976. International Atomic Energy Agency, Vienna. 2, 229–240.Google Scholar
  57. 57.
    Bremner, J.M. and Steele, C.G. 1978 Role of microorganisms in the atmos­pheric sulfur cycle. Adv. Microbial Ecol. 2, 155–201.Google Scholar
  58. 58.
    Bristow, J.M. 1975 The structure and function of roots in aquatic vascular plants. In: The Development and Function of Roots, pp. 221–236. Torrey, J.G. and Clardson, D.T. (eds.), Academic Press, New York.Google Scholar
  59. 59.
    Bromfield, A.R. 1974 The deposition of sulphur in the rainwater of Northern Nigeria. Tellus 26, 408–411.Google Scholar
  60. 60.
    Bryant, M.P., Campbell, L.L., Reddy, C.A. and Crabill, M.R. 1977 Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2 utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33, 1162­-1169.Google Scholar
  61. 61.
    Cahet, G. 1966 Substrats énergétiques naturels des bactéries sulfatoréduc­trices. C.R. Acad. Sci. Paris 263, sér. D, 691–692.Google Scholar
  62. 62.
    Cahet, G. 1970 Aspects chemotrophiques en sédiments lagunaires. Cas du soufre. Vie et Milieu 21, 1–33.Google Scholar
  63. 63.
    Cahet, G. 1975 Transfert d’énergie en milieu sédimentaire. Cas des sulfato­réducteurs. II. Relations syntrophiques avec diverses microflores. Vie et Milieu 25, 49–66.Google Scholar
  64. 64.
    Campbell, L.L. and Postgate, J.R. 1965 Classification of the spore-forming sulfate-reducing bacteria. Bact. Rev. 29, 359–363.Google Scholar
  65. 65.
    Cappenberg, Th.E. 1974 Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations. Antonie van Leeuwenhoek 40, 285–295.Google Scholar
  66. 66.
    Chaudhry, I.A. and Cornfield, A.H. 1966 Determination of sulphide in waterlogged soils. Plant and Soil 3, 474–479.Google Scholar
  67. 67.
    Chen, K.Y. and Morris, J.C. 1972 Kinetics of oxidation of aqueous sulfides by O2. Environ. Sci. Technol. 6, 529–537.Google Scholar
  68. 68.
    Chi Li Liu and Peck, H.D. Jr. 1981 Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum spp. J. Bacteriol. 145, 966–973.Google Scholar
  69. 69.
    Choudhri, M.B. 1978 Rice soils of Pakistan. In: IRRI, Soils and Rice, pp. 147–161. Los Banos, Philippines.Google Scholar
  70. 70.
    Chow, W.T. and Ng, S.K. 1969 A preliminary study on acid sulphate soils in West Malaysia. Malaysian Agric. J. 47, 253–267.Google Scholar
  71. 71.
    Connell, W.E. and Patrick, W.H. Jr. 1968 Sulfate reduction in soil: effects of redox potential and pH. Science (Washington D.C.) 159, 86–87.Google Scholar
  72. 72.
    Connell, W.E. and Patrick, W.H. Jr. 1969 Reduction of sulfate to sulfide in waterlogged soil. Soil Sci. Soc. Amer. Proc. 33, 711–715.Google Scholar
  73. 73.
    Elgabaly, M.M. 1978 Rice soils of Egypt and other Near East countries. In: IRRI, Soils and Rice, pp. 135–146. Los Banos, Philippines.Google Scholar
  74. 74.
    Engler, R.M. and Patrick, W.H. Jr. 1973 Sulfate reduction and sulfide oxidation in flooded soil as affected by chemical oxidants. Soil Sci. Soc. Amer. Proc. 37, 685–688.Google Scholar
  75. 75.
    Engler, R.M. and Patrick, W.H. Jr. 1975 Stability of sulfides of manganese, iron, zinc, copper and mercury in flooded and nonflooded soil. Soil Sci. 119, 217–221.Google Scholar
  76. 76.
    Farwell, S.O., Sherrard, A.E., Pack, M.R. and Adams, D.F. 1979 Sulfur com­pounds volatilized from soils at different moisture content. Soil Biol. Bio­chem. 11, 411–415.Google Scholar
  77. 77.
    Fawzi Abed, M.A.H. 1976 Sulfate reduction in poorly-drained soils as influenced by organic matter and soil texture. Beitrage zur Tropischen Land­wirtschaft und Veterinärmedizin No. 1, 89–93.Google Scholar
  78. 78.
    Fenchel, T.M. and Riedl, R.J. 1970 The sulfide system: a new biotic com­munity underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7, 255–268.Google Scholar
  79. 79.
    Flach, K.W. and Slusher, D.F. 1978 Soils used for rice culture in the United States. In: IRRI, Soils and Rice, pp. 199–214. Los Banos, Philippines.Google Scholar
  80. 80.
    Fortuner, R. and Jacq, V.A. 1976 In vitro study of toxicity of soluble sulphides to three nematodes parasitic on rice in Senegal. Nematologica, 22, 343–351.Google Scholar
  81. 81.
    Freney, J.R. 1961 Some observations on the nature of organic sulphur com­pounds in soil. Aust. J. Agric. Res. 12, 424–432.Google Scholar
  82. 82.
    Freney, J.R., Melville, G.E. and Williams, C.H. 1975 Soil organic matter frac­tions as sources of plant-available sulphur. Soil Biol. Biochem. 7, 217–221.Google Scholar
  83. 83.
    Freney, J.R., Stevenson, F.J. and Beavers, R.H. 1972 Sulfur-containing amino acids in soil hydrolysates. Soil Sci. 114, 468–476.Google Scholar
  84. 84.
    Freney, J.R. and Swaby, R.J. 1975 Sulphur transformations in soils. In: Sulphur in Australasian Agriculture, pp. 31–39. McLachlan, K.D. (ed.), Sydney University Press, Sydney.Google Scholar
  85. 85.
    Furusaka, C. 1968 Studies on the activity of sulfate reducers in paddy soils. Bull. Inst. Agric. Res. Tohoku Univ. 19, 101–184 (in Japanese).Google Scholar
  86. 86.
    Garcia, J-L., Raimbault, M., Jacq, V., Rinaudo, G. and Roger, P.A. 1974 Activités microbiennes dans les sols des rizières du Sénégal: Relations avec les caractéristiques physico-chimiques et influence de la rhizosphère. Rev. Ecol. Biol. Sol, 11, 169–185.Google Scholar
  87. 87.
    Gibbs, R.J. 1972 Water chemistry of the Amazon River. Geochim. Cosmo­chim. Acta 36, 1061–1066.Google Scholar
  88. 88.
    Goldhaber, M.B. and Kaplan, I.R. 1974 The sulfur cycle. In: The Sea, pp. 569–655. Goldberg, E.D. (ed.), John Wiley & Sons, New York.Google Scholar
  89. 89.
    Gotoh, S. and Yamashita, K. 1966 Oxidation-reduction potential of a paddy-soil in situ with special reference to the production of ferrous iron, manganous manganese and sulfide, Soil Sci. Plant Nutr. 12, 24–32.Google Scholar
  90. 90.
    Gottschal, J.C., De Vries, S. and Kuenen, J.G. 1979 Competition between the facultatively chemolithotrophic Thiobacillus A2, and obligately chemolitho­trophic Thiobacillus and a heterotrophic Spirillum for inorganic and organic substrates. Arch. Microbiol. 121, 241–249.Google Scholar
  91. 91.
    Gourmelon, C., Boulègue, J. and Michard, G. 1977 Oxydation partielle de l’hydrogène sulfuré en phase aqueuse. C.R. Acad. Sci. Paris. 284(c), 269-­272.Google Scholar
  92. 92.
    Greenwood, D.J. and Goodman, D. 1964 Oxygen diffusion and aerobic respiration in soil spheres. J. Sci. Food Agric. 15, 579–588.Google Scholar
  93. 93.
    Guay, R. and Silver, M. 1975 Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can. J. Microbiol. 21, 281–288.Google Scholar
  94. 94.
    Habte, M. and Alexander, M. 1980 Nitrogen fixation by photosynthetic bacteria in lowland rice culture. Appl. Environ. Microbiol. 39, 342–347.Google Scholar
  95. 95.
    Haldar, B.R. and Barthakur, H.P. 1976 Sulphide production in some typical rice soils of Assam. J. Indian. Soc. Soil Sci. 24, 387–395.Google Scholar
  96. 96.
    Han, K.W. 1973 Sulfur availability to rice plants and its transformations in rice soil and rhizosphere. M.Sc. Thesis, University of Philippines, Los Banos.Google Scholar
  97. 97.
    Hague, M.Z., Kobayashi, M., Fujii, K. and Takahashi, E. 1969 Seasonal changes of photosynthetic bacteria and their products. Soil Sci. Plant Nutr. 15, 51–55.Google Scholar
  98. 98.
    Hart, M.G.R. 1959 Sulphur oxidation in tidal mangrove soils of Sierra Leone. Plant and Soil 11, 215–236.Google Scholar
  99. 99.
    Hart, M.G.R. 1962 Observations on the source of acid in empoldered man­grove soils. I. Formation of elemental sulphur. Plant and Soil 17, 87–98.Google Scholar
  100. 100.
    Hart, M.G.R. 1963 Observations on the source of acid in empoldered mangrove soils. II. Oxidation of soil polysulphides. Plant and Soil 19, 106-­114.Google Scholar
  101. 101.
    Harter, R.D. and McLean, E.O. 1965 The effect of moisture level and incubation time on the chemical equilibria of a Toledo clay loam soil. Agron. J. 57, 583–588.Google Scholar
  102. 102.
    Hatchikian, E.C., Chaigneau, M. and Le Gall, J. 1975 Analysis of gas pro­duction by growing cultures of three species of sulfate-reducing bacteria. Proc. Symp. Microbial Production and Utilization of Gases, pp. 109–118. Akademie der Wissenschaften zu Göttingen.Google Scholar
  103. 103.
    Hauser, G.F. and Sadikin, R. 1956 The productivity of the soils of East Central Java based on yields of Savah rice. Contrib. Gen. Agric. Res. Stn. Bogor 144, 1–98.Google Scholar
  104. 104.
    Hollis, J.P. 1967 Toxicant diseases of rice. Louisiana Agric. Exp. Sta. Bull. 614, 24 pp.Google Scholar
  105. 105.
    Hollis, J.P., Allam, A.I. and Pitts, G. 1972 Sulfide diseases of rice. Abs. Phytopathology, 62, 764–765.Google Scholar
  106. 106.
    Hollis, J.P., Allam, A.I., Pitts, G., Joshi, M.M. and Ibrahim, I.K.A. 1975 Sulfide diseases of rice on iron-excess soils. Acta Phytopathol. Acad. Sci. Hung. 10, 329–341.Google Scholar
  107. 107.
    Hollis, J.P. and Rodriguez-Kabana, R. 1967 Fatty acids in Louisiana rice fields. Phytopathology 57, 841–847.Google Scholar
  108. 108.
    Houghton, C. and Rose, F.A. 1976 Liberation of sulfate from sulfate esters by soils. Appl. Environ. Microbiol. 31, 969–976.Google Scholar
  109. 109.
    Hutchinson, G.E. 1957 A Treatise on Limnology. Vol. 1. Wiley, New York.Google Scholar
  110. 110.
    Hutchinson, M., Johnstone, K.I. and White, D. 1969 Taxonomy of the genus Thiobacillus: the outcome of numerical taxonomy applied to the group as a whole. J. Gen. Microbiol. 57, 397–410.Google Scholar
  111. 111.
    Inada, K. 1965 Bronzing disease of rice plant in Ceylon. I. Effect of field treatments on bronzing occurrence and changes in leaf respiration induced by the disease. Nippon Sakumotsu Gakkai Kiji 33, 309–314.Google Scholar
  112. 112.
    Inada, K. 1965 Bronzing disease of rice plant in Ceylon. II. Cause of the occurrence of bronzing. Nippon Sakumotsu Gakkai Kiji 33, 315–323.Google Scholar
  113. 113.
    Ishizawa, S. and Toyoda, H. 1964 Microflora of Japanese soils. Nogyo Gijutsu Kenkyusho Kokoku 14B: 204–284. [in Japanese].Google Scholar
  114. 114.
    Ishizuka, Y. and Tanaka, A. 1959 Inorganic nutrition of rice plants, IV. Effect of calcium, magnesium and sulfur levels in culture solution on yields and chemical composition of the plant. J. Sci. Soil and Manure, Japan 30, 414–416 [in Japanese] .Google Scholar
  115. 115.
    Ismunadji, M. and Miyake, M. 1978 Sulfur and amino acid content of brown rice. Mimes Central Research Institute of Agriculture, Bogor, Indonesia, 8 pp.Google Scholar
  116. 116.
    Ismunadji, M. and Zulkarnaini, I. 1977 Sulphur deficiency in lowland rice in Indonesia. In: Proceedings of the International Seminar on Soil Environment and Fertility Management in Intensive Agriculture, Tokyo, pp. 647–652.Google Scholar
  117. 117.
    Ismunadji, M. and Zulkarnaini, I. 1978 Sulphur deficiency of lowland rice in Indonesia. Sulphur in Agriculture 2, 17–19 and 22.Google Scholar
  118. 118.
    Ismunadji, M., Zulkarnaini, I. and Miyake, M. 1975 Sulphur deficiency in lowland rice in Java. Contr. Centr. Res. Inst. Agric. Bogor 14, 17 pp.Google Scholar
  119. 119.
    Iwamoto, R. 1969 Straighthead of rice plants affected by functional abnormality of thiol-compound metabolism. Mem. Tokyo Univ. Agric. 13, 62–80.Google Scholar
  120. 120.
    Jacq, V.A. 1973 Biological sulphate-reduction in the spermosphere and the rhizosphere of rice in some acid sulphate soils of Senegal. In: Proc. Int. Symp. Acid Sulphate Soils, 2, pp. 82–98. Dost, H. (ed.), Int. Inst. Land Reclama­tion and Improvement, Wageningen, The Netherlands.Google Scholar
  121. 121.
    Jacq, V.A. 1975 La sulfato-réduction en relation avec l’excrétion racinaire. Soc. Bot. Fr. Coll. Rhizosphère 122, 169–181.Google Scholar
  122. 122.
    Jacq, V. 1977 Sensibilité du riz aux sulfures d’origine microbienne. Cah. O.R.S.T.O.M. Sér. Biol. 12, 97–99.Google Scholar
  123. 123.
    Jacq, V.A. 1978 Utilisation du `Sulfur Coated Urea’ en rizière et production de sulfures toxiques. Cah. O.R.S.T.O.M. Sér. Biol. 13, 133–136.Google Scholar
  124. 124.
    Jacq, V.A. 1980 Biological sulphur cycle in paddy fields: populations of microorganisms (sulphate-and sulphur-reducing bacteria, sulphooxidizers) in the spermosphere and rhizosphere of rice, and resulting accumulation of toxic sulphides. Ilnd Int. Symp. Microbial Ecology. Univ. Warwick, Coventry (GB).Google Scholar
  125. 125.
    Jacq, V.A., and Fortuner, R. 1979 Biological control of rice nematodes using sulphate reducing bacteria. Rev. Nematol. 2, 41–50.Google Scholar
  126. 126.
    Jacq, V.A. and Roger, P.A. 1978 Evaluation des risques de sulfato-réduction en rizière au moyen d’un critère microbiologique mesurable in situ. Cah. O.R.S.T.O.M. Sér. Biol. 13, 137–142.Google Scholar
  127. 127.
    Johnson, C.L. 1977 Chemoautotrophic bacteria. In: Handbook of micro­biology, 2nd ed., pp. 285–300. Laskin, A.I. and Lechevalier, H.A. (eds.), C.R.C. Press Inc., Cleveland.Google Scholar
  128. 128.
    Jorgensen, B.B. and Fenchel, T. 1974 The sulfur cycle of a marine sediment model. Mar. Biol. 24, 189–201.Google Scholar
  129. 129.
    Jorgensen, B.B., Hansen, M.H. and Ingvarson, K. 1978 Sulfate reduction in coastal sediments and the release of H2 S to the atmosphere. In: Environ­mental Biogeochemistry and Geomicrobiology, 1, 245–253. Krumbein, W.E. (ed.), Ann Arbor Science, Michigan.Google Scholar
  130. 130.
    Jorgensen, B.B., Revsbech, N.P., Blackburn, T.H. and Cohen, Y. 1979 Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in cyanobacterial mat sediment. Appl. Environ. Microbiol. 38, 46–58.Google Scholar
  131. 131.
    Joshi, M.M., Ibrahim, I.K.A. and Hollis, J.P. 1975 Hydrogen sulfide: effects on the physiology of rice plants and relation to straighthead disease. Phyto­pathology 65, 1165–1170.Google Scholar
  132. 132.
    Joshi, M.M., and Hollis, J.P. 1977 Interaction of Beggiatoa and rice plant: detoxification of hydrogen sulfide in the rice rhizosphere. Science (Washington D.C.) 195, 179–180.Google Scholar
  133. 133.
    Kadota, H. and Ishida, Y. 1972 Production of volatile sulfur compounds by microorganisms. Ann. Rev. Microbiol. 26, 127–138.Google Scholar
  134. 134.
    Kaiser, P. 1966 Ecologie des bactéries photosynthétiques. Rev. Ecol. Biol. Sol 3, 409–472.Google Scholar
  135. 135.
    Kapoor, R.K., Khemani, L.T. and Ramana Murty, Bh. V. 1972 Chemical composition of rain water and rain characteristics at Delhi. II. Tellus, 24, 575–579.Google Scholar
  136. 136.
    Kapoor, R.K. and Paul, S.K. 1980 A study of the chemical components of aerosols and snow in the Kashmir region. Tellus 32, 33–41.Google Scholar
  137. 137.
    Karim, M., Alam, S.M. and Rahman, M. 1970 Annual Tech. Report. Atomic Energy Centre. Dacca, Bangladesh.Google Scholar
  138. 138.
    Karim, M. and Majlish, M.A.K. 1958 A study on the formative effects of sulphur on rice plant. Pakistan J. Sci. Res. 10, 52.Google Scholar
  139. 139.
    Kawalec, A. 1973 World distribution of acid sulphate soils: references and map. In: Proc. Int. Symp. Acid Sulphate Soils, 1, pp. 292–295. Dost, H. (ed.), Int. Inst. Land Reclamation and Improvement Wageningen, The Nether­lands.Google Scholar
  140. 140.
    Kelly, D.P. 1971 Autotrophy. Concepts of lithotrophic bacteria and their organic metabolism. Ann. Rev. Microbiol. 25, 177–210.Google Scholar
  141. 141.
    Kelly, D.P. and Tuovinen, O.H. 1972 Recommendation that the names Ferrobacillus ferrooxidans Leathen and Braly and Ferrobacillus sulfooxidans Kinsel be recognized as synonyms of Thiobacillus ferrooxidans Temple and Colmer. Int. J. Syst. Bacteriol. 22, 170–172.Google Scholar
  142. 142.
    Kempner, E.S. 1966 Acid production by Thiobacillus thiooxidans. J. Bact. 92, 1842–1843.Google Scholar
  143. 143.
    Khemani, L.T. and Ramana Murty. Bh. V. 1968 Chemical composition of rain water and rain characteristics at Delhi. Tellus 20, 284–291.Google Scholar
  144. 144.
    Kimura, M., Wada, H. and Takai, Y. 1977 Rhizosphere of rice plant. III. Microbiological features of the rhizosphere (2), Nippon Dojohiryo Gaku Zasshi 48, 111–114. [in Japanese] .Google Scholar
  145. 145.
    Kimura, M., Wada, H., and Takai, Y. 1979 The studies on the rhizosphere of paddy rice. VI. The effects of anaerobiosis on microbes. Soil Sci. Plant Nutr. 25, 145–153.Google Scholar
  146. 146.
    Kobayashi, M., Takahashi, E. and Kawaguchi, K. 1966 Distribution of nitrogen-fixing microorganisms in paddy soils of Southeast Asia. Soil Sci. 104, 113–118.Google Scholar
  147. 147.
    Kobayashi, M. and Hague, M.Z. 1971 Contribution to nitrogen fixation and soil fertility by photosynthetic bacteria. Plant and Soil Spec. Vol. 43, 443–456.Google Scholar
  148. 148.
    Kumada, K. 1949 Investigation on the rhizosphere of rice seedling. (1) On the microscopic structure of the rhizosphere and oxidative power of root. J. Sci. Soil Manure 19, 119–124 [in Japanese] .Google Scholar
  149. 149.
    Laanbroek, H.J. and Pfennig, N. 1981 Oxidation of short-chain fatty acids by sulphate-reducing bacteria in freshwater and in marine sediments. Arch. Microbiol. 128, 330–335.Google Scholar
  150. 150.
    Larsen, H. 1953 Green sulfur bacteria. Kon. Norshe Vidensk. Selskabs Skrifter, NR1, 1–187.Google Scholar
  151. 151.
    Lee, C.C. 1973 An observation on the fertilizer effect of locally produced sulfur-coated urea used for paddy. Tech. Bull. Taiwan Fertilizer Co. No. 48.Google Scholar
  152. 152.
    Leelavathy, K.M. 1970 Amino-acids and sugars in the exudates from ger­minating seeds of rice. Proc. Indian Acad. Sci., Ser. B. 72, 81–90.Google Scholar
  153. 153.
    Leijder, R.A. and Aldjabri, M. 1972 Sulphur deficiency under conditions of wet rice cultivation with specific reference to a vertisol near Ngawi, East Java. Newsletter, Soil Study Group, Bogor 1/2: 21.Google Scholar
  154. 154.
    Livingstone, D.A. 1963 Chemical composition of rivers and lakes. Geological Survey Professional Paper 440-G. United States Government Printing Office, Washington, 64 pp.Google Scholar
  155. 155.
    Lockard, R.G., Ballaux, J.G. and Liongson, E.A. 1972 Response of rice plants grown in three potted Luzon soils to additions of boron, sulfur and zinc. Agron. J. 64, 444–447.Google Scholar
  156. 156.
    London, J. 1963 Thiobacillus intermedius, nov. sp. a novel type of facultative autotroph. Arch. Mikrob. 46, 329–337.Google Scholar
  157. 157.
    London, J. and Rittenberg, S.C. 1967 Thiobacillus perometabolis, nov. sp., a non-autotrophic Thiobacillus. Arch. Mikrob. 59, 218–225.Google Scholar
  158. 158.
    MacRae, I.C. and Castro, T.F. 1966 Carbohydrates and amino acids in the root exudates of rice seedlings. Phyton. 23, 95–100.Google Scholar
  159. 159.
    Mah, R.A., Smith, M.R. and Baresi, L. 1978 Studies on an acetate-fermenting strain of Methanosarcina. Appl. Environ. Microbiol. 35, 1174–1184.Google Scholar
  160. 160.
    Mamaril, C.P., Pangerang Umar, A., Manwan, I. and Momuat, C.J.S. 1976 Sulphur response of lowland rice in South Sulawesi, Indonesia. Contr. Centr. Res. Inst. Agric. Bogor, 22, 12 pp.Google Scholar
  161. 161.
    Matheron, P. 1976 Contribution à l’étude écologique, systématique et physio­logique des Chromatiaceae et des Chlorobiaceae isolées des sédiments marins. Thèse Univ. Aix Marseille II 193 pp.Google Scholar
  162. 162.
    Matheron, R. and Baulaigue, R. 1976 Sur l’écologie des Chromatiaceae et des Chlorobiaceae marines. Ann. Microbiol. Inst. Pasteur Paris 127, A, 515–520.Google Scholar
  163. 163.
    Matsuo, H., Pecrot, A.J. and Riquier, J. 1978 Rice soils of Europe. In: IRRI, Soils and Rice, pp. 193–198. Los Banos, Philippines.Google Scholar
  164. 164.
    Matsuzaka, Y. 1978 Rice soils of Japan. In: IRRI, Soils and Rice, pp. 163-­177. Los Banos, Philippines.Google Scholar
  165. 165.
    Metwally, A.I., El-Damaty, A. and Yani, Y.G. 1978 Chemical changes accompanying waterlogging. 1. Effect of sulphate and organic matter. Acta Agronomica Acad. Scientiarum. Hung. 27, 133–139.Google Scholar
  166. 166.
    Miller, L.P. 1947 Utilization of dl-methionine as a source of sulfur by growing plants. Boyce Thompson Inst. Contrib. 14, 443–456.Google Scholar
  167. 167.
    Misra, R.D. 1938 Edaphic factors in the distribution of aquatic plants in English lakes. J. Ecol. 26, 411–451.Google Scholar
  168. 168.
    Mitsui, S. 1956 Inorganic Nutrition, Fertilization and Soil Amelioration of Lowland Rice (3rd Ed.). Yokendo, Toyko, Japan.Google Scholar
  169. 169.
    Mitsui, S., Aso, S. and Kumazawa, K. 1951 Dynamic studies on the nutrient uptake by crop plants I. The nutrient uptake of rice roots as influenced by hydrogen sulfide. J. Sci. Soil Manure Japan 22, 46–52.Google Scholar
  170. 170.
    Mitsui, S., Aso, S., Kumazawa, K. and Ishiwara, T. 1954 The nutrient uptake of rice plants as influenced by hydrogen sulfide and butyric acid abundantly evolving under waterlogged soil condition. Trans. 5th Int. Congr. Soil Sci. 2, 364–368.Google Scholar
  171. 171.
    Mizoguchi, T., Sato, T. and Okabe, T. 1976 New sulfur-oxidizing bacteria capable of growing heterotrophically, Thiobacillus rubellus nov. sp. and Thiobacillus delicatus nov. sp., J. Ferm. Technol. 54, 181–191.Google Scholar
  172. 172.
    Moore, W.E.C., Johnson, J.L., and Holdeman, L.V. 1976 Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten species in the genera Desulfomonas,Butyvibrio, Eubacterium, Clos­tridium and Ruminococcus. Int. J. Syst. Bact. 26, 238–253.Google Scholar
  173. 173.
    Moorman, F.R. 1978 Morphology and classification of soils on which rice is grown. In: IRRI, Soils and Rice, pp. 255–272. Los Banos, Philippines.Google Scholar
  174. 174.
    Morris, J.C. and Stumm, W. 1967 Redox equilibria and measurements of potentials in the aquatic environment. In: `Equilibrium Concepts in Natural Water Systems’. Adv. Chem. Series 67, 270–285. Washington D.C.Google Scholar
  175. 175.
    Mortimer, C.H. 1941 The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29, 280–329.Google Scholar
  176. 176.
    Mountfort, D.O., Asher, R.A., Mays, E.L. and Tiedje, J.M. 1980 Carbon and electron flow in mud and sand flat intertidal sediments at Delaware inlet, Nelson, New Zealand. Appl. Environ. Microbiol. 39, 686–694.Google Scholar
  177. 177.
    Mouraret, M. and Baldensperger, J.F. 1977 Use of membrane filters for the enumeration of autotrophic Thiobacilli. Microbial Ecology 3, 345–359.Google Scholar
  178. 178.
    Murthy, R.S. 1978 Rice soils of India. In: IRRI, Soils and Rice, pp. 3–17. Los Banos, Philippines.Google Scholar
  179. 179.
    Mutsaars, M. and Van Der Velden, J. 1973 Le dessalement des terres salées du fleuve Sénégal. Bilan des trois années d’expérimentations (1970–1973). Rapp. FAO, 74 pp.Google Scholar
  180. 180.
    Myers, P.S. and Millar, W.N. 1975 Non-autotrophic Thiobacillus in acid mine water. Appl. Environ. Microbiol. 30, 884–886.Google Scholar
  181. 181.
    Nikaido, M. 1977 On the relation between methane production and sulfate reduction in bottom muds containing sea water sulfate. Geochem. J. 88, 199–206.Google Scholar
  182. 182.
    Nissenbaum, A. and Kaplan, I.R. 1972 Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol. Oceanogr. 17, 570–582.Google Scholar
  183. 183.
    Ogota, G. and Bower, C.H. 1965 Significance of biological sulfate reduction to soil salinity. Soil Sci. Soc. Amer. Proc. 29, 23–25.Google Scholar
  184. 184.
    Okajima, H. and Takagi, S. 1953 Physiological behavior of hydrogen sulfide in the rice plant. Part 1. Effect of hydrogen sulfide on the absorption of nutrients. Rep. Inst. Agr. Res. Tohoku Univ. D5, 21–31.Google Scholar
  185. 185.
    Okajima, H. and Takagi, S. 1955 Physiological behavior of hydrogen sulfide in the rice plant. Part 2. Effect of hydrogen sulfide on the content of nutrients in the rice plant. Rep. Inst. Agr. Res. Tohoku Univ. D6, 89–99.Google Scholar
  186. 186.
    Okajima, H. and Takagi, S. 1956 Physiological behavior of hydrogen sulfide in the rice plant. Part 4. Effect of hydrogen sulfide on the distribution of radioactive P32 in the rice plant. Rep. Inst. Agr. Res. Tohoku Univ. D7, 107-­113.Google Scholar
  187. 187.
    Okuda, A., Yamaguchi, M. and Kamata, S. 1957 Nitrogen-fixing micro­organisms in paddy soils. III. Distribution of non-sulfur purple bacteria in paddy soils. Soil Sci. Plant Nutr. 2, 131–133.Google Scholar
  188. 188.
    Ota, Y. 1968 Occurrence of the physiological disorder of rice called `bronzing’. Bull. Natn. Inst. Agric. Sci. Tokyo D18, 97–104.Google Scholar
  189. 189.
    Panabokke, C.R. 1978 Rice soils of Sri Lanka. In: IRRI, Soils and Rice, pp. 19–33. Los Banos, Philippines.Google Scholar
  190. 190.
    Paramananthan, S. 1978 Rice soils of Malaysia. In: IRRI, Soils and Rice, pp. 87–98. Los Banos, Philippines.Google Scholar
  191. 191.
    Park, Y.D. and Tanaka, A. 1968 Studies of the rice plant on an `akiochi’ soil in Korea. Soil Sci. Plant Nutr. 14, 27–34.Google Scholar
  192. 192.
    Patnaik, S. 1978 Natural sources of nutrients in rice soils. In: IRRI. Soils and Rice, pp. 501–519. Los Banos, Philippines.Google Scholar
  193. 193.
    Patrick, W.H. Jr. and Delaune, R.D. 1972 Characterization of the oxidized and reduced zones in flooded soil. Soil Sci. Soc. Amer. Proc. 36, 573–576.Google Scholar
  194. 194.
    Patrick, W.H. Jr. and Mikkelsen, D.S. 1971 Plant nutrient behavior in flooded soil. In: Fertilizer Technology and Use. pp. 187–215. Olson, R.A., Army, T.J., Hanway, J.J. and Kilmer, V.J. (eds.), Soil Sci Soc. Am. Madison, Wisconsin.Google Scholar
  195. 195.
    Patrick, W.H. Jr. and Reddy, C.N. 1978 Chemical changes in rice soils. In: IRRI, Soils and Rice, pp. 361–379. Los Banos, Philippines.Google Scholar
  196. 196.
    Pearsall, W.H. and Mortimer, C.H. 1939 Oxidation-reduction potentials in waterlogged soils, natural waters and muds. J. Ecol. 27, 483–501.Google Scholar
  197. 197.
    Pfennig, N. 1975 The phototrophic bacteria and their role in the sulfur cycle. Plant and Soil (Special Vol.) 43, 1–16.Google Scholar
  198. 198.
    Pfennig, N. and Biebl, H. 1976 Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110, 3–12.Google Scholar
  199. 199.
    Pillai, P.B. and Singh, H.G. 1974 Effect of sulphur in preventing the occur­rence of chlorosis in paddy seedlings. Agric. Res. J. Kerala 12, 49–55.Google Scholar
  200. 200.
    Pitts, G., Allam, A.I. and Hollis, J.P. 1972 Aqueous iron-sulfur systems in rice field soils of Louisiana, Plant and Soil 36, 251–260.Google Scholar
  201. 201.
    Pitts, G., Allam, A.I. and Hollis, J.P. 1972 Beggiatoa: occurrence in the rice rhizosphere. Science (Washington D.C.) 178, 990–992.Google Scholar
  202. 202.
    Ponnamperuma, F.N. 1972 The chemistry of submerged soils. Adv. Agron. 24, 29–96.Google Scholar
  203. 203.
    Ponnamperuma, F.N. 1977 Physico chemical properties of submerged soils in relation to fertility. IRRI Research Paper Series No. 5. 32 pp.Google Scholar
  204. 204.
    Ponnamperuma, F.N. and Beye, G. 1973 Amelioration of three acid sulphate soils for lowland rice. Proc. Int. Symp. Acid sulphate soils, 2, 391–406. Dost, H. (ed.), Int. Inst. Land Reclamation and Improvement, Wageningen, The Netherlands.Google Scholar
  205. 205.
    Pont, D. 1977 Recherches sur l’évolution saisonnière du peuplement de Copépodes, Cladocères et Ostracodes des rizières de Camargue. Thèse Univ. Sci. Tech. Languedoc. Montpellier, France. 24 pp.Google Scholar
  206. 206.
    Postgate, J.R. and Campbell, L.L. 1966 Classification of Desulfovibrio species, the non-sporulating sulfate-reducing bacteria. Bact. Rev. 30, 732-­739.Google Scholar
  207. 207.
    Probert, M.E. 1976 The composition of rainwater at two sites near Towns­ville, Qld. Aust. J. Soil Res. 14, 397–402.Google Scholar
  208. 208.
    Putnam, H.D. and Schmidt, E.L. 1959 Studies on the free amino acid frac­tions of soils. Soil Sci. 87, 22–27.Google Scholar
  209. 209.
    Raymundo, M.E. 1978 Rice soils of the Philippines. In: IRRI, Soils and Rice, pp. 115–133. Los Banos, Philippines.Google Scholar
  210. 210.
    Rittenberg, S.C. 1969 The roles of exogenous organic matter in the physio­logy of chemolithotrophic bacteria. Adv. Microbiol. Physiol. 3, 159–196.Google Scholar
  211. 211.
    Rodriguez-Kabana, R., Jordan, J.W. and Hollis, J.P. 1965 Nematodes: bio­logical control in rice fields: role of hydrogen sulfide. Science (Washington D.C.) 148, 524–526.Google Scholar
  212. 212.
    Rojanasoonthon, S. 1978 Rice soils of Thailand. In: IRRI, Soils and Rice, pp. 73–85. Los Banos, Philippines.Google Scholar
  213. 213.
    Roy, A.B. and Trudinger, P.A. 1970 The Biochemistry of Inorganic Com­pounds of Sulphur. Cambridge University Press, Cambridge U.K.Google Scholar
  214. 214.
    Sachdev, M.S. and Chhabra, P. 1974 Transformations of 35 35S-labelled sulfate in aerobic and flooded soil conditions. Plant and Soil 41, 335–341.Google Scholar
  215. 215.
    Sadhu, M.K. and Das, T.M. 1968 Amino acids liberated by growing rice seed­lings. Bull. Botan. Soc. Bengal 22, 219–220.Google Scholar
  216. 216.
    Sadhu, M.K. and Das, T.M. 1971 Root exudates of rice seedlings. The influence of one variety on another. Plant and Soil 34, 541–546.Google Scholar
  217. 217.
    Saito, M. and Watanabe, I. 1978 Organic matter production in rice field flood water. Soil Sci. Plant Nut. 24, 427–444.Google Scholar
  218. 218.
    Saran, A.B. 1949 Some observations on an obscure disease of paddy, Oryza sativa. Current Sci. 18, 378–379.Google Scholar
  219. 219.
    Sen, A.T. 1938 Further experiments on the occurrence of depressed yellow patch of paddy in the Mandalay farm. Burma Dept. Agric. Rep. 1937–38, 35 pp.Google Scholar
  220. 220.
    Senez, J.C. 1973 Eléments de bioénergétique. Ediscience, Paris, 79 pp.Google Scholar
  221. 221.
    Shlomi, E.R., Lamkhorst, A. and Prins, R.A. 1978 Methanogenic fermen­tation of benzoate in an enrichment culture. Microbial Ecology 4, 249–261.Google Scholar
  222. 222.
    Smith, M.R. and Mah, R.A. 1978 Growth and methanogeneis by Methano­sarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36, 870–879.Google Scholar
  223. 223.
    Soepraptohardjo, M. and Suhardjo, H., Rice soils of Indonesia. In: IRRI, Soils and Rice, pp. 99–113. Los Banos, Philippines.Google Scholar
  224. 224.
    Soo, S.W. 1972 Semi-detailed survey of the Kedah/Perlis coastal plain. West Malaysia Soil Survey Report 1 Soil and Analytical Services Branch. Div. Agric. Kuala Lumpur.Google Scholar
  225. 225.
    Spencer, K. and Freney, J.R. 1980 Assessing the sulfur status of field-grown wheat by plant analysis. Agron. J. 72, 469–472.Google Scholar
  226. 226.
    Stangel, P. 1979 Nitrogen requirement and adequacy of supply for rice production. In: IRRI Nitrogen and Rice, pp. 45–69. Los Banos, Philippines.Google Scholar
  227. 227.
    Starkey, R.L. 1935 Isolation of some bacteria which oxidize thiosulfate. Soil Sci. 39, 197–215.Google Scholar
  228. 228.
    Starkey, R.L. 1966 Oxidation and reduction of sulfur compounds in soils. Soil Sci. 101, 297–306.Google Scholar
  229. 229.
    Stevenson, F.J. 1956 Isolation and identification of some amino compounds in soils. Soil Sci. Soc. Am. Proc. 20, 201–208.Google Scholar
  230. 230.
    Strohl, W.R. and Larkin, J.M. 1978 Enumeration, isolation and character­ization of Beggiatoa from freshwater sediments. Appl. Environ. Microbiol. 36, 755–770.Google Scholar
  231. 231.
    Stumm, W. 1966 Redox potential as an environmental parameter: conceptual significance and operational limitation. Proc. Int. Water Pollution Res. Conf. (3rd., Munich) 1, 283–306.Google Scholar
  232. 232.
    Subbiah, B.V. and Venkateswarlu, J. 1965 Availability and transformation of sulfur in rice soils. In: Radioisotopes and Radiation in Soil-Plant Nutrition Studies IAEA, Vienna, pp. 563–572.Google Scholar
  233. 233.
    Subramoney, N. 1965 Injury to paddy seedlings by production of H2 S under field conditions. J. Indian Soc. Soil Sci. 13, 95–98.Google Scholar
  234. 234.
    Suzuki, A. 1977 Effect of sulphur nutrition on some aspects of amino acid metabolism and the diagnosis of sulphur deficiency in crop plants. Bull Nat. Inst. Agric. Sci. Japan. No. 29, 49–106.Google Scholar
  235. 235.
    Suzuki, S. and Shiga, H. 1956 Studies on physical and chemical character­istics of Akiochi paddy soils. Part 2. Relation between production of free hydrogen sulfide and Akiochi degree. Bull. Chugoku Agr. Exp. Sta. 3, 69–80.Google Scholar
  236. 236.
    Swaby, R.J. and Vitolins, M.I. 1968 Sulphur oxidation in Australian soils. Trans. 9th Int. Congr. Soil Sci. 4, 673–681.Google Scholar
  237. 237.
    Tabatabai, M.A. and Bremner, J.M. 1972 Forms of sulfur and carbon, nitrogen and sulfur relationships in Iowa soils. Soil Sci. 114, 380–386.Google Scholar
  238. 238.
    Tadano, T. and Tanaka, A. 1970 Studies on the iron nutrition of rice plants. (3). Iron absorption affected by potassium status of the plant. J. Sci. Soil Manure 41, 142–148 [in Japanese] .Google Scholar
  239. 239.
    Takahashi, Y. 1970 Nutrition of the rice plant in relation to the occurrence of `akagare’ disease. Bull. Nat. Inst. Agric. Sci. D 21, 1–59.Google Scholar
  240. 240.
    Takahasi, J. 1964 Natural supply of nutrients in relation to plant require­ments. In: IRRI, The Mineral Nutrition of the Rice Plant, pp. 271–294. John Hopkins Press, Baltimore.Google Scholar
  241. 241.
    Takai, Y. 1969 The mechanism of reduction in paddy soil. Japan Agric. Res. Quarterly 4, 20–23.Google Scholar
  242. 242.
    Takai, Y. 1978 Reduction mechanism of paddy soils. In: Suidendojogaku, pp. 23–55. Kawaguchi, K. (ed.), Kodansha, Tokyo [in Japanese] .Google Scholar
  243. 243.
    Takai, Y. and Asami, T. 1962 Formation of methyl mercaptan in paddy soils. I. Soil Sci. Plant Nutr. 8, 40–44.Google Scholar
  244. 244.
    Takai, Y. and Kamura, T. 1969 The mechanism of reduction in waterlogged paddy soil. Folia Microbiol. 11, 304–313.Google Scholar
  245. 245.
    Takai, Y., Koyama, T., and Kamura, T. 1969 Effects of rice plant roots and percolating water in the reduction process of flooded paddy soil in pot. V. Microbial metabolism in reduction process of paddy soils. Nippon Dojohiryo Gaku Zasshi, 40, 15–19 [in Japanese] .Google Scholar
  246. 246.
    Takai, Y. and Tezuka, C. 1971 Sulfate-reducing bacteria in paddy and upland soils. Nippon Dojohiryo Gaku Zasshi 42, 145–151 [in Japanese] .Google Scholar
  247. 247.
    Takijima, Y. 1963 Studies on behavior of the growth inhibiting substances in paddy soils with special reference to the occurrence of root damage in the peaty paddy field. Bull. Nat. Inst. Agri. Sci. B. 13, 117–252.Google Scholar
  248. 248.
    Takijima, Y. 1964 Studies on the mechanism of root damage of rice plant in the peat paddy fields. 1. Root damage and growth inhibitory substances found in the peaty and peat soil. Soil Sci. Plant Nutr. 10, 231–238.Google Scholar
  249. 249.
    Takijima, Y. 1965 Studies on the mechanism of root damage of rice plant in the peat paddy fields. 2. Status of roots in the rhizosphere and the occur­rence of root damage. Soil Sci. Plant Nutr. 11, 204–211.Google Scholar
  250. 250.
    Takijima, Y., Wijayaratna, H.M.S. and Seneviratne, C.J. 1970 Nutrient deficiency and physiological disease of lowland rice in Ceylon. IV. Remedy for bronzing disease of rice. Soil Sci. Plant Nutr. 16, 17–23.Google Scholar
  251. 251.
    Tanaka, A., Mulleriyawa, R.P., and Yasu, T. 1968 Possibility of hydrogen sulfide induced iron toxicity of the rice plant. Soil Sci. Plant Nutr. 14, 1–6.Google Scholar
  252. 252.
    Tanaka, A. and Yoshida, S. 1970 Nutritional disorders of the rice plant in Asia. International Rice Research Institute. Tech. Bull. 10, 51 pp.Google Scholar
  253. 253.
    Temple, K.L. and Delchamps, E.W. 1953 Autotrophic bacteria and the for­mation of acid in bituminous coal mines. Appl. Microbiol. 1, 255–258.Google Scholar
  254. 254.
    Tisdale, S.L. and Nelson, W.L. 1966 Soil Fertility and Fertilizers. Macmillan, New York.Google Scholar
  255. 255.
    Tomlison, T.E. 1957 Changes in sulfide containing mangrove soil on drying and their effect upon the suitability of the soil for the growth of rice. Emp. J. Exp. Agric. 25, 108–118.Google Scholar
  256. 256.
    Tomlison, T.E. 1957 Relationship between mangrove vegetation, soil texture and reaction of surface soil, after empoldering saline swamps in Sierra Leone. Trop. Agric. (Trin.) 34, 41–50.Google Scholar
  257. 257.
    UNESCO (United Nations Educational, Scientific, and Cultural Organiz­ation). 1974 FAO-UNESCO Soil Map of the World, 1:500,000. Vol 1, Legend, Paris, 59 pp.Google Scholar
  258. 258.
    USDA (United States Department of Agriculture). 1975 Soil Conservation Service, Soil Survey Staff. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. USDA Agric. Handbook 436. US Government Printing Office Washington DC, 260 pp.Google Scholar
  259. 259.
    Vâmos, R. 1958 Hydrogen sulphide, the cause of bruzone (akiochi) disease of rice. Soil Plant Food 4, 37–40.Google Scholar
  260. 260.
    Vâmos, R. 1959 ‘Brusone’ disease of rice in Hungary. Plant and Soil 11, 65-­77.Google Scholar
  261. 261.
    Vâmos, R. 1964 The release of hydrogen sulfide from mud. J. Soil Sci. 15, 103–109.Google Scholar
  262. 262.
    Vâmos, R. 1965 The biological effects of sulphate reduction in waterlogged soils. Agrokemia es Talajtan. 14, 115–116.Google Scholar
  263. 263.
    Vâmos, R. 1966 The effect of H2 S on the IAA content of the rice plant and on the development of its adventitious roots. Acta Biol. 12, 67–72.Google Scholar
  264. 264.
    Vâmos, R. 1968 The factors of the root-rot of the rice plant. Il Riso, 189­199.Google Scholar
  265. 265.
    Vâmos, R. and Kovacs, E. 1962 A study on the Eh, conditions of the rhizo­sphere in rice varieties resistant and susceptible to `bruzone’. Acta Agron. Acad. Sci. Hung. 11, 369–382.Google Scholar
  266. 266.
    Vâmos, R. and Köves, E. 1972 Role of the light in the prevention of the poisoning action of hydrogen sulphide in the rice plant. J. Appl. Ecol. 9. 519–525.Google Scholar
  267. 267.
    Van Breemen, N. and Pons, L.J. 1978 Acid sulfate soils and rice. In: IRRI, Soils and Rice, pp. 739–761. Los Banos, Philippines.Google Scholar
  268. 268.
    Van Raalte, M.H. 1941 On the oxygen supply of rice roots. Ann. Bot. Garden Buitenzorg 50, 99–114.Google Scholar
  269. 269.
    Van Raalte, M.H. 1944 On the oxidation of the environment by the roots of rice (Oryza sativa L.). Ann. Bot. Garden Buitenzorg 54, 15–34.Google Scholar
  270. 270.
    Venkateswarlu, J., Subbiah, B.V. and Tamhane, R.V. 1969 Vertical distri­bution of forms of sulfur in selected rice soils of India. Indian J. Agric. Sci. 39, 426–431.Google Scholar
  271. 271.
    Vishniac, W. and Santer, M. 1957 The Thiobacilli. Bacteriol. Rev. 21, 195­-213.Google Scholar
  272. 272.
    Vitolins, M.I. and Swaby, R.J. 1969 Activity of sulphur-oxidising micro­organisms in some Australian soils. Aust. J. Soil Res. 7, 171–183.Google Scholar
  273. 273.
    Wakao, N. and Furusaka, C. 1972 A new agar plate method for the quan­titative study of sulfate-reducing bacteria in soil. Soil Sci. Plant Nutr. 18, 39­-44.Google Scholar
  274. 274.
    Wakao, N. and Furusaka, C. 1973 Distribution of sulfate-reducing bacteria in paddy-field soil. Soil Sci. Plant Nutr. 19, 47–52.Google Scholar
  275. 275.
    Wakao, N. and Furusaka, C. 1976 Presence of micro-aggregates containing sulfate-reducing bacteria in a paddy-field soil. Soil Biol. Biochem. 8, 157­-159.Google Scholar
  276. 276.
    Wakao, N. and Furusaka, C. 1976 Influence of organic matter on the distri­bution of sulfate-reducing bacteria in a paddy-field soil. Soil Sci. Plant Nutr. 22, 203–205.Google Scholar
  277. 277.
    Wakao, N., Hattori, T. and Furusaka, C. 1973 Study on the distribution patterns of sulfate-reducing bacteria in a paddy-field soil by IS-index. Soil Sci. Plant Nutr. 19, 201–203.Google Scholar
  278. 278.
    Wang, C.H. 1978 Sulphur fertilization of rice. Sulphur in Agriculture 2, 13-­16.Google Scholar
  279. 279.
    Wang, C.H. 1979 Sulphur fertilization of rice - Diagnostic techniques. Sulphur in Agriculture 3, 12–15 and 18.Google Scholar
  280. 280.
    Wang, C.H., Liem, T.H. and Mikkelsen, D.S. 1976 Sulfur deficiency - a limit­ing factor in rice production in the lower Amazon basin. I. Development of sulfur deficiency as a limiting factor for rice production. IRI Research Institute Bulletin No. 47, 46 pp.Google Scholar
  281. 281.
    Wang, C.H., Liem, T.H. and Mikkelsen, D.S. 1976 Sulfur deficiency - a limit­ing factor in rice production in the lower Amazon Basin. II. Sulfur require­ment for rice production. IRI Research Institute Bulletin No. 48, 30 pp.Google Scholar
  282. 282.
    Watanabe, I. and Furusaka, C. 1980 Microbial ecology of flooded rice soils. In: Advances in Microbial Ecology, 4, pp. 125–168. Alexander, M. (ed.), Plenum Pub. Corp, New York.Google Scholar
  283. 283.
    Weir, R.G. 1975 The oxidation of elemental sulphur and sulphides in soil. In: Sulphur in Australasian Agriculture, pp. 40–49. McLachlan, K.D. (ed.), Sydney University Press, Sydney.Google Scholar
  284. 284.
    Wen Lin Yuan and Ponnamperuma, F.N. 1966 Chemical retardation of the reduction of flooded soils and the growth of rice. Plant and Soil 25, 347­-360.Google Scholar
  285. 285.
    Widdel, F. and Pfennig, N. 1977 A new anaerobic, sporing, acetate-oxidising, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol. 112, 119–122.Google Scholar
  286. 286.
    Williams, C.H. 1974 The chemical nature of sulphur in some New South Wales soils. In: Handbook on Sulphur in Australian Agriculture, pp. 16–23. McLachlan, K.D. (ed.), CSIRO Australia, Melbourne.Google Scholar
  287. 287.
    Williams, R.A. and Hoare, D.S. 1972 Physiology of a new facultatively auto­trophic thermophilic Thiobacillus. J. Gen. Microbiol. 70, 555–566.Google Scholar
  288. 288.
    Winfrey, M.R. and Zeikus, J.G. 1977 Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Environ. Microbiol. 33, 275–281.Google Scholar
  289. 289.
    Wolfe, R.S. and Pfennig, N. 1977 Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium. Appl. Environ. Microbiol. 33, 427–433.Google Scholar
  290. 290.
    Wolin, M.J. 1975 Interactions between H2 -producing and methane-producing species. Proc. Symp. Microbial Production and Utilization of Gases. Akademie der Wissenschaften zu Göttingen, 141–150.Google Scholar
  291. 291.
    Wu. M.M.H., Wu, C.S., Chiang, M.H. and Chou, S.F. 1972 Microbial investi­gations on the suffocation disease of rice in Taiwan. Plant and Soil 37, 329-­344.Google Scholar
  292. 292.
    Yamada, N. and Ota, Y. 1958 Study on the respiration of crop plants (8) Effect of hydrogen sulphide and lower fatty acids on root respiration of rice. Proc. Crop Sci. Soc. Japan 27, 155–160.Google Scholar
  293. 293.
    Yamane, I. and Koseki, K. 1976 Effect of some oxidants upon sulfate reduc­tion and methane formation under submerged conditions. J. Sci. Soil Manure Japan 47, 58–62.Google Scholar
  294. 294.
    Yamane, I. and Sato, I. 1961 Metabolism in muck paddy soil. Part 3. Role of soil organic matter in the evolution of free hydrogen sulfide in water-logged soils. Rep. Inst. Agr. Res. Tohoku University Ser. D12, 73–86.Google Scholar
  295. 295.
    Yamane, I. and Sato, K. 1968 Initial drop of oxidation-reduction potential in submerged air-dried soils. Soil Sci. Plant Nutr. 14, 68–72.Google Scholar
  296. 296.
    Yamane, I. and Sato, K. 1970 Plant and soil in a lowland rice field added with forage residues. Rep. Inst. Agr. Res. Tohoku University 21, 79–101.Google Scholar
  297. 297.
    Yang, S.C. 1972 Effect of magypsum urea on rice. J. Taiwan Agric. Res. 21, 215–220.Google Scholar
  298. 298.
    Ye Goung, Khin Win and Win Htin 1978 Rice soils of Burma. In: IRRI, Soils and Rice, pp. 57–71. Los Banos, Philippines.Google Scholar
  299. 299.
    Yong Haw Shin 1978 Rice soils of Korea. In: IRRI, Soils and Rice, pp. 179­-191. Los Banos, Philippines.Google Scholar
  300. 300.
    Yoshida, T. 1975 Microbial metabolism of flooded soils. In: Soil Bio­chemistry, 3, pp. 83–122. Paul, E.A. and McLaren, A.D. (eds.), Marcel Dekker, New York.Google Scholar
  301. 301.
    Yoshida, T. 1978 Microbial metabolism in rice soils. In: IRRI, Soils and Rice, pp. 445–463. Los Banos, Philippines.Google Scholar
  302. 302.
    Yoshida, S. and Chaudhry, M.R. 1979 Sulfur nutrition of rice. Soil Sci. Plant Nutr. 25, 121–134.Google Scholar
  303. 303.
    Zeikus, J.G. 1977 The biology of methanogenic bacteria. Bacteriol. Rev. 41, 514–541.Google Scholar
  304. 304.
    Zhilina, T.N. and Zavarzin, G.A. 1973 Trophic relationship between Methanosarcina and its associates. Mikrobiologiya 42, 235–241.Google Scholar
  305. 305.
    Zsoldos, F. 1959 Changes in free amino acids in rice seedlings due to the effect of factors rendering them susceptible of the browning disease. Acta Biol. 5, 71–76.Google Scholar
  306. 306.
    Zsoldos, F. 1962 Nitrogen metabolism and water regime of rice plant affected by ‘brusone’ disease. Plant and Soil 16, 269–283.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers, The Hague/Boston/London 1982

Authors and Affiliations

  • J. R. Freney
  • V. A. Jacq
  • J. F. Baldensperger

There are no affiliations available

Personalised recommendations