Advertisement

A Nonlinear Fracture Mechanics Approach to Crack Propagation in the Creep-Fatigue Interaction Range

  • R. Ohtani
  • T. Kitamura
  • K. Yamada
Conference paper

Abstract

High temperature fatigue tests were conducted with center cracked thin-walled cylindrical specimens in a closed-loop servo hydraulic testing machine. The applicability of nonlinear fracture mechanics to the time-dependent as well as the cycle-dependent fatigue crack propagation was determined, using creep J-integral and fatigue J-integral.

Keywords

Fatigue Crack Propagation Crack Propagation Rate Creep Crack Growth Fatigue Crack Propagation Rate Nonlinear Fracture Mechanics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Taira, R. Ohtani, T. Kitamura, and K. Yamada, “J-Integral Approach to Crack Propagation under Combined Creep and Fatigue Condition”,J. of Soc. Mat. Sci., Japan, 28–308, (1979), pp. 414–420, (in Japanese).CrossRefGoogle Scholar
  2. (2).
    R. Ohtani, “Crack Propagation Under Creep-Fatigue Interaction”, to be presented in the Proceeding of Int. Conf. on Engineering Aspect of Creep, to be held in Sheffield, 15–19 September, 1980.Google Scholar
  3. (3).
    N.E. Dowling, “Geometry Effects and the J-Integral Approach to Elastic- Plastic Fatigue Crack Growth”, ASTM STP 601, (1976), pp. 19–32.Google Scholar
  4. (4).
    N.E. Dowling, “Crack Growth During Low-Cycle Fatigue of Smooth Axial Specimens”, ASTM STP 637. (1977), pp. 97–121.Google Scholar
  5. (5).
    S. Taira, K. Tanaka, and S. Ogawa, “Fatigue Crack Propagation Law under Elastic-Plastic and General Yield Conditions”, J. of Soc. Mat. Sci., Japan, 26–280, (1977), pp. 93–98, (in Japanese).CrossRefGoogle Scholar
  6. (6).
    S. Taira, K. Tanaka, and T. Hoshide, “Evaluation of J-Integral Range and Its Relation to Fatigue Crack Growth Rate”, Proc. of the 22nd Japan Cong, on Mat. Res., Soc. of Mat. Sci., Japan, (1979), pp. 123–129.Google Scholar
  7. (7).
    S. Taira, R. Ohtani, and T. Komatsu, “Application of J-Integral to High- Temperature Crack Propagation, Part II — Fatigue Crack Propagation”,ASME J. of Engng. Mat, and Tech., 101–2, (1979), pp. 162–167.CrossRefGoogle Scholar
  8. (8).
    S. Taira, R. Ohtani, and T. Kitamura, “Application of J-Integral to High- Temperature Crack Propagation, Part I — Creep Crack Propagation:, ibid., pp. 154–161.Google Scholar
  9. (9).
    K. Ohji, K. Ogura, and S. Kubo, “Creep Stress Analysis of a Notched Body Under Longitudinal Shear and its Application to Crack Propagation Problems”, Proc. 1974 Symp. on Mech. Behav. of Mat., Soc. of Mat. Sci., Japan, (1974), pp. 455–466.Google Scholar
  10. (10).
    J.D. Landes and J.A. Begley, “A Fracture Mechanics Approach to Creep Crack Growth”, ASTM STP 590, (1976), pp. 128–148.Google Scholar
  11. (11).
    M.P. Harper and E.G. Ellison, “The Use of the C* Parameter in Predicting Creep Crack Propagation Rates”, J. Strain Analysis, 12–3, (1977), pp. 167–179.CrossRefGoogle Scholar
  12. (12).
    R. Koterazawa and T. Mori, “Crack Propagation under Intermittent Overloading at Elevated Temperatures”,J. of Soc. Mat. Sci., Japan, 27–303, (1978), pp. 1178–1184, (in Japanese).CrossRefGoogle Scholar
  13. (13).
    K. Ohji, K. Ogura, and S. Kubo, “Estimates of J-Integral in General Yielding Range and its Application to Creep Crack Problems”, Trans. JSME, 44–382, (1978), pp. 1831–1838, (in Japanese).CrossRefGoogle Scholar
  14. (14).
    S.S. Manson, “New Directions in Materials Research Dictated by Stringent Future Requirements”, Proc. Int. Conf. on Mech. Behav. of Mat., Spec. Vol., Soc. of Mat. Sci., Japan, (1972), pp. 3–60.Google Scholar
  15. (15).
    G.R. Halford, M.H. Hirschberg, and S.S. Manson, “Temperature Effects on the Strainrange Partitioning Approach for Creep Fatigue Analysis”, ASTM STP 520, (1973), pp. 658–669.Google Scholar
  16. (16).
    S. Taira, R. Ohtani, T. Yonekura, M. Osada, and T. Kitamura, “Time Dependent Fatigue Crack Propagation at Elevated Temperature”, to be contributed to Trans. JSME.Google Scholar
  17. (17).
    K. Hirakawa and K. Tokimasa, “Effect of Environment on Partitioned Strain- Life Relations of SUS304 Stainless Steel”,J. of Soc. Mat. Sci., Japan, 28–308, (1979), pp. 386–392, (in Japanese).CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1981

Authors and Affiliations

  • R. Ohtani
    • 1
  • T. Kitamura
    • 2
  • K. Yamada
    • 3
  1. 1.Kyoto UniversityYoshida, Sakyo-ku, KyotoJapan
  2. 2.Central Research Institute of Electric Power IndustryKomae, TokyoJapan
  3. 3.Kyoto UniversityJapan

Personalised recommendations