Decreasing Myocardial Energy Utilization

  • Keith A. Reimer
  • Robert B. Jennings
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 14)


The onset of myocardial ischemia is followed by the rapid depletion of residual oxygen in the tissues; mitochondrial respiration is inhibited and, within the first 15–30s, the energy metabolism of the cell converts to anaerobic glycolysis [1]. In areas of milder ischemia, some blood glucose may be available as a substrate and the available oxygen may support a reduced level of mitochondrial oxidative metabolism [2]. In areas of severe ischemia, however, the conversion of glycogen to lactate becomes the only meaningful source of high-energy phosphate production. Although the complete oxidation of 1 µmol glucose nets 38µmol ATP, conversion of glycogen to lactate nets only 3µmol ATP per µmol glucosyl units consumed. Thus, anaerobic glycolysis cannot meet the normal energy needs of the working myocardium.


Infarct Size Calcium Antagonist Coronary Occlusion Anaerobic Glycolysis Severe Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braasch W, Gudbjarnason S, Puri PS, Ravens KG, Bing RJ: Early changes in energy metabolism in the myocardium following acute coronary artery occlusion in anesthetized dogs. Circ Res 23:429, 1968.PubMedGoogle Scholar
  2. 2.
    Opie LH: Metabolic regulation in ischemia and hypoxia: effects of regional ischemia on metabolism of glucose and fatty acids. Relative rate of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia. Circ Res 38:1–52, 1976.Google Scholar
  3. 3.
    Katz AM, Hecht HH: The early ‘pump’ failure of the ischemic heart [editorial] . Am J Med 47:497–502, 1969.PubMedCrossRefGoogle Scholar
  4. 4.
    Jennings RB, Reimer KA: Lethal myocardial ischemic injury. Am J Pathol 102:241–255, 1981.PubMedGoogle Scholar
  5. 5.
    Skou JC: Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 45:596–617, 1965.PubMedGoogle Scholar
  6. 6.
    Hokin LE: The molecular machine for driving the coupled transports of Na+ and K+ is an (Na+ + K+)-activated ATPase. Trends Biochem Sci I:233–237, 1976.Google Scholar
  7. 7.
    Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA: Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92:187, 1978.PubMedGoogle Scholar
  8. 8.
    Allison TB, Ramey CA, Holsinger JW Jr: Transmural gradients of left ventricular tissue metabolites after circumflex artery ligation in dogs. J Mol Cell Cardiol 9:837–852, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Jennings RB, Reimer KA, Hill ML, Mayer SE: Total myocardial ischemia, in vitro. I. Comparison of high energy phosphate production, utilization and depletion and of adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ Res 49:892–900, 1981.PubMedGoogle Scholar
  10. 10.
    Neely JR, Liedtke AJ, Whitmer JT, Rovetto MJ: Relationship between coronary flow and adenosine triphosphate production from glycolysis and oxidative metabolism. In: Recent advances in studies on cardiac structure and metabolism, vol 8: Roy P-E, Harris P (eds). The cardiac sarcoplasm. Baltimore: University Park Press, 1974, p 301.Google Scholar
  11. 11.
    Scheuer J, Stezoski SW: Protective role of increased myocardial glycogen stores in cardiac anoxia in the rat. Circ Res 27:835–849, 1970.PubMedGoogle Scholar
  12. 12.
    Neely JR, Morgan HE: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:4 13–459, 1974.PubMedCrossRefGoogle Scholar
  13. 13.
    Gelet TR, Altschuld RA, Weissler AM: Effects of acidosis on the performance and metabolism of the anoxic heart. Circulation [Suppl] 39 and 40.IV-60, 1969.Google Scholar
  14. 14.
    Williamson JR, Safer B, Rich T, Schaffer S, Kobayaski K: Effects of acidosis on myocardial contractility and metabolism. Acta Med Scand [Suppl] 587:95, 1976.Google Scholar
  15. 15.
    Rovetto MJ, Lamberton WF, Neely JR: Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 37:742–751, 1975.PubMedGoogle Scholar
  16. 16.
    Armiger LC, Seelye RN, Phil D, Elswijk JG, Carnell VM, Gavin JB, Herdson, PB: Fine structural changes in dog myocardium exposed to lowered pH in vivo. Lab Invest 37:237–242, 1977.PubMedGoogle Scholar
  17. 17.
    Armiger LC, Seelye RN, Elswijk JG, Carnell VM, Benson DC, Gavin JB, Herdson PB: Mitochondrial changes in dog myocardium induced by lactate in vivo. Lab Invest 33:502–508, 1975.PubMedGoogle Scholar
  18. 18.
    Shine KI, Douglas AM, Ricchiuti NV: Calcium, strontium, and barium movements during ischemia and reperfusion in rabbit ventricle. Implications for myocardial preservation. Circ Res 43:712, 1978.PubMedGoogle Scholar
  19. 19.
    Reimer KA, Jennings RB, Hill ML: Total myocardial ischemia, in vitro. II. High energy phosphate depletion and associated defects in energy metabolism, cell volume regulation, and sarcolemmal integrity. Circ Res 49:901–911, 1981.PubMedGoogle Scholar
  20. 20.
    Braunwald E: Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 27:416–432, 1971.PubMedCrossRefGoogle Scholar
  21. 21.
    Redwood DR, Smith ER, Epstein SE: Coronary artery occlusion in the conscious dog: effects of alterations in heart rate and arterial pressure on the degree of myocardial ischemia. Circulation 46:323–332, 1972.PubMedGoogle Scholar
  22. 22.
    Maroko PR, Bernstein EF, Libby P, DeLaria GA, Covell JW, Ross J Jr, Braunwald E: Effects of intraaortic balloon counterpulsation on the severity of myocardial ischemic injury following acute coronary occlusion. Counterpulsation and myocardial injury. Circulation 45:1150–1159, 1972.PubMedGoogle Scholar
  23. 23.
    Roberts AJ, Alonso DR, Combes JR, Jacobstein JG, Post MR, Cahill PT, Shean-Lan TH, Abel RM, Subramanian VA, Gay WA Jr: Role of delayed intraaortic balloon pumping in treatment of experimental myocardial infarction. Am J Cardiol 41:1202–1208, 1978.PubMedCrossRefGoogle Scholar
  24. 24.
    Sugg WL, Webb WR, Ecker RR: Reduction of extent of myocardial infarction by counterpulsation. Ann Thorac Surg 7:310–316, 1969.PubMedCrossRefGoogle Scholar
  25. 25.
    Weber A: On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomyosin. J Biol Chem 234:2764, 1959.PubMedGoogle Scholar
  26. 26.
    Nayler WG, Merrillees NCR: Cellular exchange of calcium. In: Harris C (ed) Calcium and the Heart. London: Academic Press, 1971, pp 24–65.Google Scholar
  27. 27.
    Hasselbach W: The sarcoplasmic calcium pump — a most efficient ion translocating system. Biophy Struct Mech 3:43–54, 1977.CrossRefGoogle Scholar
  28. 28.
    Lehninger AL: Ca2+ transport by mitochondria and its possible role in the cardiac contraction-relaxation cycle. Circ Res [Suppl 3] 34 and 35 III-83–90, 1974.Google Scholar
  29. 29.
    Dhalla NS, Yates JC, Proveda V: Calcium-linked changes in myocardial metabolism in the isolated perfused rat heart. Can J Physiol Pharmacol 55:925–933, 1977.PubMedCrossRefGoogle Scholar
  30. 30.
    Fleckenstein A: Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann Rev Pharmacol Toxicol 17:149–166, 1977.CrossRefGoogle Scholar
  31. 31.
    Nayler WG: The effect of beta-adrenergic blocking drugs on myocardial function: an explanation at the subcellular level. Postgrad Med J [Suppl] 46:90–96, 1970.Google Scholar
  32. 32.
    Jones RN, Hill ML, Reimer KA, Wechsler AS, Jennings RB: Effect of hypothermia on the rate of myocardial ATP and adenine nucleotide degradation in total ischemia [abstr]. Fed Proc 39:1111, 1980.Google Scholar
  33. 33.
    Tyers GFO, Williams EH, Hughes HC, Todd GJ: Effect of perfusate temperature on myocardial protection from ischemia. J Thorac Cardiovasc Surg 73:766–771, 1977.PubMedGoogle Scholar
  34. 34.
    Boyer NH, Gerstein MM: Induced hypothermia in dogs with acute myocardial infarction and shock. J Thorac Cardiovasc Surg 74:286–294, 1977.PubMedGoogle Scholar
  35. 35.
    Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J Jr, Braunwald E: Factors influencing infarct size following experimental coronary artery occlusion. Circulation 43:67–82, 1971.PubMedGoogle Scholar
  36. 36.
    Watanabe T, Shintani F, Fu L, Fujii J, Watenabe H, Kato K: Influence of inotropic alteration on the severity of myocardial ischemia after experimental coronary occlusion. Jpn Heart J 13:222–231, 1972.PubMedCrossRefGoogle Scholar
  37. 37.
    Libby P, Maroko PR, Covell JW, Mallock CI, Ross J, Braunwald E: Effect of practolol on the extent of myocardial ischaemic injury after experimental coronary occlusion and its effects on ventricular function in the normal and ischaemic heart. Cardiovasc Res 7:167–173, 1973.PubMedCrossRefGoogle Scholar
  38. 38.
    Wendt RL, Canavan RC, Michalak RJ: Effects of various agents on regional ischemic myocardial injury: electrocardiographic analysis. Am Heart J 87:468–482, 1974.PubMedCrossRefGoogle Scholar
  39. 39.
    Sommers HM, Jennings RB: Ventricular fibrillation and myocardial necrosis after transient ischemia. Effect of treatment with oxygen, procainamide, reserpine, and propranolol. Arch Intern Med 129:780–789, 1972.PubMedCrossRefGoogle Scholar
  40. 40.
    Reimer KA, Rasmussen MM, Jennings RB: Reduction by propranolol of myocardial necrosis following temporary coronary artery occlusion in dogs. Circ Res 33:353–353, 1973.PubMedGoogle Scholar
  41. 41.
    Reimer KA, Rasmussen MM, Jennings RB: On the nature of protection by propranolol against myocardial necrosis after temporary coronary occlusion in dogs. Am J Cardiol 37:520–527, 1976.PubMedCrossRefGoogle Scholar
  42. 42.
    Ginks W, Ross J Jr, Sybers HD: Prevention of gross myocardial infarction in the canine heart. Arch Pathol 97:380–384, 1974.PubMedGoogle Scholar
  43. 43.
    Pierce WS, Carter DR, McGavran MH, Waldhausen JA: Modification of myocardial infarct volume. An experimental study in the dog. Arch Surg 107:682–687, 1973.PubMedGoogle Scholar
  44. 44.
    Shatney CH, MacCarter DJ, Lillehei RC: Effects of allopurinol, propranolol and methylprednisolone on infarct size in experimental myocardial infarction. Am J Cardiol 37:572–580, 1976.PubMedCrossRefGoogle Scholar
  45. 45.
    Ergin MA, Dastgir G, Butt KMH, Stuckey JH: Prolonged epicardial mapping in myocardial infarction: the effects of propranolol and intra-aortic balloon pumping following coronary artery occlusion. J Thorac Cardiovasc Surg 72:892–899, 1976.PubMedGoogle Scholar
  46. 46.
    Raina S, Banka VS, Ramanathan K, Bodenheimer MM, Heifant RH: Beneficial effects of propranolol and digitalis on contraction and S-T segment elevation after acute coronary occlusion. Am J Cardiol 42:226–233, 1978.PubMedCrossRefGoogle Scholar
  47. 47.
    Miura M, Thomas R, Ganz W, Sokol T, Shell WE, Toshimitsu T, Kwan AC, Singh BN: The effect of delay in propranolol administration on reduction of myocardial infarct size after experimental coronary artery occlusion in dogs. Circulation 59:1148–1157, 1979.PubMedGoogle Scholar
  48. 48.
    Rasmussen MM, Reimer KA, Kloner RA, Jennings RB: Infarct size reduction by propranolol before and after coronary ligation in dogs. Circulation 56:794–798, 1977.PubMedGoogle Scholar
  49. 49.
    Kloner RA, Fishbein MC, Cotran RS, Braunwald E, Maroko PR: The effect of propranolol on microvascular injury in acute myocardial ischemia. Circulation 55:872–880, 1977.PubMedGoogle Scholar
  50. 50.
    Jesmok GJ, Gross GJ, Hardman HF: Effect of propranolol and nitroglycerin plus methoxamine on transmural creatinine kinase activity after acute coronary occlusion. Am J Cardiol 42:769–773, 1978.PubMedCrossRefGoogle Scholar
  51. 51.
    Peter T, Heng MK, Singh BN, Ambler P, Nisbet H, Elliot R, Norris RM: Failure of high doses of propranolol to reduce experimental myocardial ischemic damage. Circulation 57:534–540, 1978.PubMedGoogle Scholar
  52. 52.
    Reimer KA, Jennings RB: The ‘wavefront phenomenon’ of myocardial ischemic cell death: II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633, 1979.PubMedGoogle Scholar
  53. 53.
    Becker LC, Fortuin NJ, Pitt B: Effect of ischemia and antianginal drugs on the distribution of radioactive microspheres in the canine left ventricle. Circ Res 28:263–269, 1971.PubMedGoogle Scholar
  54. 54.
    Kloner RA, Reimer KA, Jennings RB: Distribution of coronary collateral flow in acute myocardial ischaemic injury: effect of propranolol. Cardiovasc Res 10:81–90, 1976.PubMedCrossRefGoogle Scholar
  55. 55.
    Thomas M: The effect of beta-blockade on ST segment elevation after actue myocardial infarction in man with some experimental observations. Acta Med Scand [Suppl] 587:185–188, 1976.Google Scholar
  56. 56.
    Buck JD, Gross GJ, Warltier DC, Jolly SR, Hardman HF: Comparative effects of cardioselective versus noncardioselective beta blockade on subendocardial blood flow and contractile function in ischemic myocardium. Am J Cardiol 44:657–663, 1979.PubMedCrossRefGoogle Scholar
  57. 57.
    Gross GJ, Winbury MM: Beta adrenergic blockade on intramyocardial distribution of coronary blood flow. J Pharmacol Exp Ther 187:451–464, 1973.PubMedGoogle Scholar
  58. 58.
    Vatner SF, Baig H, Manders WT, Ochs H, Pagani M: Effects of propranolol on regional myocardial function, electrograms, and blood flow in conscious dogs with myocardial ischemia. J Clin Invest 60:353–360, 1977.PubMedCrossRefGoogle Scholar
  59. 59.
    Lucchesi BR, Burmeister WE, Lomas TE, Abrams GD: Ischemic changes in the canine heart as affected by the dimethyl quaternary analog of propranolol, UM-272 (SC-27761). J Pharmacol Exp Ther 199:310–328, 1976.PubMedGoogle Scholar
  60. 60.
    Ku DD, Lucchesi BR: Effects of dimethyl propranolol (UMO-272; SC-27761) on myocardial ischemic injury in the canine heart after temporary coronary artery occlusion. Circulation 57:541–548, 1978.PubMedGoogle Scholar
  61. 61.
    Kniffen FJ, Lomas TE, Burmeister WE, Lucchesi BR: Effects of dimethyl quaternary propranolol (UM-272) on oxygen consumption and ischemic ST segment changes in the canine heart. J Pharmacol Exp Ther 194:234–243, 1975.PubMedGoogle Scholar
  62. 62.
    Sloman G, Hunt D, Ross D: Propranolol in patients with acute myocardial infarction at the Royal Melbourne Hospital from 1965: a review. Postgrad Med J [Suppl 4] 52:150–152, 1976.PubMedGoogle Scholar
  63. 63.
    Snow PJ: Treatment of acute myocardial infarction with propranolol. Am J Cardiol 18:458–459, 1966.PubMedCrossRefGoogle Scholar
  64. 64.
    Stephen SA: Propranolol in acute myocardial infarction. A multicentre trial. Lancet 2:1435–1438, 1966.Google Scholar
  65. 65.
    Norris RM, Caughey DE, Scott PJ: Trial of propranolol in acute myocardial infarction. Br Med J 2:398–400, 1968.PubMedCrossRefGoogle Scholar
  66. 66.
    Waagstein F, Hjalmarson AC, Wasir HS: Apex cardiogram and systolic time intervals in acute myocardial infarction and effects of practolol. Br Heart J 36:1109–1121, 1974.PubMedCrossRefGoogle Scholar
  67. 67.
    Waagstein F, Hjalmarson AC: Double-blind study of the effect of cardioselective beta-blockade on chest pain in acute myocardial infarction. Acta Med Scand [Suppl] 587:201–207, 1976.Google Scholar
  68. 68.
    Gold HK, Leinbach RC, Maroko PR: Propranolol-induced reduction of signs of ischemic injury during acute myocardial infarction. Am J Cardiol 38:689–695,1976.PubMedCrossRefGoogle Scholar
  69. 69.
    Reid DS, Pelides LJ, Shillingford JP, Thomas M: Electrocardiographic surface mapping of the heart following myocardial infarction and the influence of beta-blockade. Postgrad Med J [Suppl 4] 52:135–139, 1976.PubMedCrossRefGoogle Scholar
  70. 70.
    Jugdutt BI, Lee SJ: Intravenous therapy with propranolol in acute myocardial infarction: effects on changes in the S-T segment and hemodynamics. Chest 74:514–521, 1978.PubMedCrossRefGoogle Scholar
  71. 71.
    Heikkilä J, Nieminen MS: Rapid monitoring of regional myocardial ischaemia with echocardiography and ST segment shifts in man. Modification of ‘infarct size’ and hemodynamics by dopamine and beta blockade. Acta Med Scand [Suppl] 623:71–95, 1978.Google Scholar
  72. 72.
    Peter T, Norris RM, Clarke ED, Heng MK, Singh BN, Williams B, Howell DR, Ambler PK: Reduction of enzyme levels by propranolol after acute myocardial infarction. Circulation 57:1091–1095, 1978.PubMedGoogle Scholar
  73. 73.
    Norris RM, Clarke ED, Sammel NL, Smith WM, Williams B: Protective effect of propranolol in threatened myocardial infarction. Lancet 2:907–910, 1978.PubMedCrossRefGoogle Scholar
  74. 74.
    Mueller HS, Ayres SM, Religa A, Evans RG: Propranolol in the treatment of acute myocardial infarction: effect on myocardial oxygenation and hemodynamics. Circulation 49:1078–1087, 1974.PubMedGoogle Scholar
  75. 75.
    Mueller H, Ayres SM: Propranolol in acute myocardial infarction in man: effects on haemodynamics and myocardial oxygénation. Postgrad Med J [Suppl 4] 52:141–148,1976.PubMedGoogle Scholar
  76. 76.
    Bloch A, Beller GA, DeSanctis RW: Chronic propanolol administration and acute myocardial infarction. Am Heart J 92:121–123, 1976.PubMedCrossRefGoogle Scholar
  77. 77.
    Narimatsu A, Taira N: Effects of atrio-ventricular conduction of calciumantagonistic coronary vasodilators, local anaesthetics and quinidine injected into the posterior and the anterior septal artery of the atrio-ventricular node preparation of the dog. Arch Pharmacol 294:169–177, 1976.CrossRefGoogle Scholar
  78. 78.
    Atterhög JH, Eklund LG, Melin AL: Effects of nifedipine on exercise tolerance in patients with angina pectoris. Eur J Clin Pharmacol 8:125, 1975.PubMedCrossRefGoogle Scholar
  79. 79.
    Fagher B, Persson S, Svensson SE: Double-blind comparison of verapamil and practolol in the treatment of angina pectoris. Postgrad Med J 55: 61,1977.CrossRefGoogle Scholar
  80. 80.
    Hosoda S, Kimura E: Efficacy of nifedipine in the variant form of angina pectoris. In: Jatene AD, Lichtlen PR (eds) New therapy of ischemic heart disease, 3rd Int Adaiat Symp, Proc. Amsterdam: Excerpta Medica (New York: Elsevier/North-Holland), 1976, p 195.Google Scholar
  81. 81.
    Livesley B, Catley PF, Campbell RC, Oram S: Double-blind evaluation of verapamil, propranolol, and isosorbide dinitrate against a placebo in the treatment of angina pectoris. Brit Med J 1:375–378, 1973.PubMedCrossRefGoogle Scholar
  82. 82.
    Smith HJ, Singh BN, Nisbet HD, Norris RM: Effects of verapamil on infarct size following experimental coronary occlusion. Cardiov Res 9:569–578, 1975.CrossRefGoogle Scholar
  83. 83.
    Wende W, Bleifeld W, Meyer J, Stuhlen HW: Reduction of the size of acute, experimental myocardial infarction by Verapamil. Basic Res Cardiol 70: 198–208, 1975.PubMedCrossRefGoogle Scholar
  84. 84.
    Reimer KA, Lowe JE, Jennings RB: Effect of the calcium antagonist verapamil on necrosis following temporary coronary artery occlusion in dogs. Circulation 55:581–587, 1977.PubMedGoogle Scholar
  85. 85.
    Fleckenstein A, Doring HJ, Leder O: The significance of high-energy phosphate exhaustion in the etiology of isoproterenol-induced cardiac necrosis and its prevention by iproveratril, compound D 600 or prenylamine. In: Drugs and metabolism of myocardium and striated muscle. Nancy: Symposium International, 1969, pp 11–22.Google Scholar
  86. 86.
    Nayler WG, Grau A, Slade A: A protective effect of verapamil on hypoxic heart muscle. Cardiovasc Res 10:650–662, 1976.PubMedCrossRefGoogle Scholar
  87. 87.
    Weishaar R, Ashikawa K, Bing RJ: Effect of diltiazem, a calcium antagonist, on myocardial ischemia. Am J Cardiol 43:1137–1143, 1979.PubMedCrossRefGoogle Scholar
  88. 88.
    Robb-Nicholson C, Currie WD, Wechsler AS: Effects of verapamil on myocardial tolerance to ischemic arrest. Comparison to potassium arrest. Circulation [Suppl] 58:I-119–124, 1978.Google Scholar
  89. 89.
    Magee PG, Flaherty JT, Bixler TJ, Glower D, Gardner TJ, Bukley BH, Gott VL: Comparison of myocardial protection with nifedipine and potassium. Circulation 60:151–157, 1979.PubMedGoogle Scholar
  90. 90.
    Clark RE, Ferguson TB, West PN, Shuchleib RC, Henry PD: Pharmacological preservation of the ischemic heart. Ann Thorac Surg 24:307–314, 1977.PubMedCrossRefGoogle Scholar
  91. 91.
    Karlsberg RP, Henry PD, Ahmed SA, Sobel BE, Roberts R: Lack of protection of ischemic myocardium by verapamil in conscious dogs. Eur J Pharmacol 42:339–346, 1977.PubMedCrossRefGoogle Scholar
  92. 92.
    Henry PD, Shuchleib R, Borda LJ, Roberts R, Williamson JR, Sobel BE: Effects of nifedipine on myocardial perfusion and ischemic injury in dogs. Circ Res 43:372–380, 1978.PubMedGoogle Scholar
  93. 93.
    Henry PD, Shuchleib R, Clark RE, Perez JE: Effect of nifedipine on myocardial ischemia: analysis of collateral flow, pulsatile heat and regional muscle shortening. Am J Cardiol 44:817–824, 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague / Boston / London 1982

Authors and Affiliations

  • Keith A. Reimer
  • Robert B. Jennings

There are no affiliations available

Personalised recommendations