Advertisement

Mineralocorticoids and sodium transport

  • R. Fraser

Abstract

Such is the wealth of information available on the mechanisms of action of hormones at the molecular level that it is easy to forget that most, if not all, of it has been gleaned during the last 20 years. It now seems clear that although some hormones may exert direct effects on cell metabolism, most seem to influence it by one of two mechanisms: by modifying protein synthesis by an effect on the cell nucleus1,2 or by stimulating the formation of a second messenger, a cyclic nucleotide usually cyclic adenosine monophosphate3. The aim of this chapter is to summarize the actions of the mineralocorticoid hormones, particularly aldosterone, on renal electrolyte metabolism, first summarizing the process of sodium transport in the distal convoluted tubule and then attempting to dissect the primary effects of aldosterone.

Keywords

Sodium Transport Distal Convoluted Tubule Sodium Pump Inherit Disease Toad Urinary Bladder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    King, R. J. B. and Mainwaring, W. I. P. (1974). Steroid Cell Interactions. (London: Butterworth)Google Scholar
  2. 2.
    O’Malley, B. W. and Means, A. R. (1974). Female steroid hormones and target cell nuclei. Science, 183, 610PubMedCrossRefGoogle Scholar
  3. 3.
    Robison, G. A., Butcher, R. W. and Sutherland, E. W. (1971). Cyclic AMP. (New York: Academic Press)Google Scholar
  4. 4.
    Biber, T. U. L. and Mullen, T. (1976). Saturation kinetics of sodium efflux across isolated frog skin. Am. J. Physiol., 231, 995PubMedGoogle Scholar
  5. 5.
    Ross, B., Leaf, A., Silva, P. and Epstein, F. H. (1974). Na,K-ATPase in sodium transport by the profused rat kidney. Am. J. Physiol., 226, 624PubMedGoogle Scholar
  6. 6.
    Fraser, R. (1971). The effect of steroids on the transport of electrolytes through membranes. Biochem. Soc. Symp., 32, 101PubMedGoogle Scholar
  7. 7.
    Patrick, J. and Hilton, P. J. (1979). Characterisation of sodium transport disorders in disease: different effects upon sodium and potassium of changes in the sodium pumps and in membrane permeability. Clin. Sci. Molec. Med., 57, 289Google Scholar
  8. 8.
    Sachs, G. (1977). Ion pumps in the renal tubule. Am. J. Physiol., 233, F359.PubMedGoogle Scholar
  9. 9.
    Silva, P., Torretti, J., Hayslett, J. P. and Epstein, F. H., (1976). Relation between Na,K-ATPase activity and respiratory rate in rat kidney. Am. J. Physiol., 230, 1432.PubMedGoogle Scholar
  10. 10.
    Nellans, H. N. and Finn, A. L. (1974). Oxygen consumption and sodium transport in the toad urinary bladder. Am. J. Physiol., 227, 670PubMedGoogle Scholar
  11. 11.
    Robinson, J. D. and Flaschner, M. S. (1979). The (Na+-K+) activated ATPase. Enzymatic and transport properties. Biochim. Biophys. Acta, 549, 145PubMedGoogle Scholar
  12. 12.
    Keynes, R. D. (1979). Ion channels in the nerve cell membrane. Sci. Am., 240, 126PubMedCrossRefGoogle Scholar
  13. 13.
    Glynn, I. M., Hoffman, J. F. and Lew, V. L. (1971). Some partial reactions of the sodium pump. Phil. Trans. R. Soc. London, B262, 91Google Scholar
  14. 14.
    Edmonds, C. J. (1972). Effect of aldosterone on mammalian intestine. J. Steroid Biochem., 3, 143PubMedCrossRefGoogle Scholar
  15. 15.
    Weedon, A. P., Stacey, T. E., Ward, R. H. T. and Boyd, R. D. H. (1978). Bidirectional sodium fluxes across the placenta of the conscious sheep. Am. J. Physiol. 235, F536PubMedGoogle Scholar
  16. 16.
    Erlij, D. (1971). Salt transport across isolated frog skin. Phil. Trans. R. Soc. London, B262, 153Google Scholar
  17. 17.
    Mills, J. N., Ernst, S. A. and DiBona, D. R. (1977). Localisation of Na+ pump sites in frog skin. J. Cell Biol., 73, 88PubMedCrossRefGoogle Scholar
  18. 18.
    Helman, S. I. and O’Neil, R. G. (1977). Model of active transepithelial sodium and potassium transport in renal collecting tubules. Am. J. Physiol., 233, F559PubMedGoogle Scholar
  19. 19.
    Giebisch, G., Boulpaep, E. L. and Whittembury G. (1971). Electrolyte transport in kidney tubule cells. Philos. Trans. R. Soc. London, B262, 175Google Scholar
  20. 20.
    Nicholls, M. G., Ramsay, L. E., Boddy, K., Fraser, R., Morton, J. J. and Robertson, J. I. S. (1979). Mineralocorticoid-induced blood pressure, electrolyte and hormone changes and reversal with spironolactone in healthy men. Metabolism, 28, 584PubMedCrossRefGoogle Scholar
  21. 21.
    Vander, A. J., Wilde, W. S. and Malvin, R. L. (1960). Stop flow analysis of aldosterone and steroidal antagonist SC 8109 on renal tubular sodium transport kinetics. Proc. Soc. Exp. Biol. Med., 103, 525PubMedGoogle Scholar
  22. 22.
    Hierholze, K. and Stolte, H. (1969). The proximal and distal tubular action of adrenal steroids on sodium reabsorption. Nephron, 6, 188CrossRefGoogle Scholar
  23. 23.
    Barger, A. C., Berlin, R. D. and Tulenko, J. F. (1958). Infusion of aldosterone, 9 a fluorohydrocortisone and antidiuretic hormone into the renal artery of normal and adrenalectomised unanaesthetised dogs; effect on electrolyte and water excretion. Endocrinology, 62, 804PubMedCrossRefGoogle Scholar
  24. 24.
    Ross, E. J. (1975). Aldosterone and Aldosteronism. (London: Lloyd Luke)Google Scholar
  25. 25.
    Schwartz, G. J. and Black, M. B. (1978). Mineralocorticoid effects on cation transport by cortical collecting ducts in vitro. Am. J. Physiol., 235, F576PubMedGoogle Scholar
  26. 26.
    Wiederholt, M., Behn, C., Schoormans, W. and Hansen, L. (1972). Effect of aldosterone on sodium and potassium transport in the kidney. J. Steroid Biochem., 3, 151PubMedCrossRefGoogle Scholar
  27. 27.
    Ussing, H. H. and Zerahn, K. (1951). Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand., 23, 110PubMedCrossRefGoogle Scholar
  28. 28.
    Ussing, H.H. (1968). The interpretation of tracer fluxes in terms of membrane structure. Q. Rev. Biophys., 1, 365CrossRefGoogle Scholar
  29. 29.
    Fraser, R., Brown, J. J., Lever, A. F., Mason, P. A. and Robertson, J. I. S. (1979). Control of aldosterone secretion. Clin. Sci. Molec. Med., 56, 389Google Scholar
  30. 30.
    Porter, G. A. and Kinsey, J. (1972). The effect of a new anti-aldosterone agent SC 19886 on aldosterone-stimulated transepithelial sodium transport. J. Steroid Biochem., 3, 201PubMedCrossRefGoogle Scholar
  31. 31.
    Edelman, LS. and Fimognari, G. (1968). On the biochemical mechanism of action of aldosterone. Recent Prog. Hormone Res., 24, 1Google Scholar
  32. 32.
    Edelman, I.S. (1975). Mechanism of action of steroid hormones. J. Steroid Biochem., 6, 147PubMedCrossRefGoogle Scholar
  33. 33.
    Edelman, I.S. (1979). Mechanism of action of aldosterone: energetic and permeability factors. J. Endocrinol., 81, 49CrossRefGoogle Scholar
  34. 34.
    Funder, J. W., Feldman, D., Highland, E. and Edelman, I. S. (1974). Molecular modifications of anti-aldosterone compounds: effects on affinity of spironolactones for renal receptors. Biochem. Pharmacol., 23, 1493PubMedCrossRefGoogle Scholar
  35. 35.
    Sakauye, C. and Feldman, D. (1976). Agonist and antimineralocorticoid activities of spirolactones. Am. J. Physiol., 231, 93PubMedGoogle Scholar
  36. 36.
    Feldman, D., Loose, D. S. and Tan, S. Y. (1978). Nonsteroidal antiinflammatory drugs cause sodium and water retention in the rat. Am. J. Physiol., 234, F490PubMedGoogle Scholar
  37. 37.
    Rousseau, G., Baxter, J. D., Funder, J. W., Edelman, LS. and Tomkins, G. M. (1972). Glucocorticoid and mineralocorticoid receptors for aldosterone. J. Steroid Biochem., 3, 219PubMedCrossRefGoogle Scholar
  38. 38.
    Crabbé, J. (1978). The sodium retaining properties of sodium. In V. H. T. James, M. Serio, G. Giusti and L. Martini (eds.) The Endocrine Function of the Human Adrenal Cortex, p. 351. (London: Academic Press)Google Scholar
  39. 39.
    McKnight, A. D. C. and Leaf, A. (1978). The sodium transport pool. Am. J. Physiol., 234, FlGoogle Scholar
  40. 40.
    Civan, M. M. (1978). Intracellular activities of sodium and potassium. Am. J. Physiol., 234, F261PubMedGoogle Scholar
  41. 41.
    Finn, A. L. (1970). Effects of potassium and amphotericin B on ion transport in the toad bladder. Am. J. Physiol., 218, 463PubMedGoogle Scholar
  42. 42.
    Leaf, A. and McKnight, A. D. C. (1972). The site of aldosterone induced stimulation of sodium transport. J. Steroid Biochem., 3, 237PubMedCrossRefGoogle Scholar
  43. 43.
    Jørgensen, P. L. (1972). The role of aldosterone in the regulation of (Na+ + K+) ATPase in the rat kidney. J. Steroid Biochem., 3, 181PubMedCrossRefGoogle Scholar
  44. 44.
    Schmidt, U., Schmidt, J., Schmidt, H. and Dubach, V. C. (1975). Sodium- and potassium-activated ATPase — a possible target of aldosterone.J. Clin. Invest., 55, 655PubMedCrossRefGoogle Scholar
  45. 45.
    Westenfelder, C., Arevalo, G. J., Baranowski, R. L., Kurtzman, N. A. and Katz, A. I. (1977). Relationship between mineralocorticoids and renal Na+ K+ ATPase: sodium reabsorption. Am. J. Physiol., 233, F593PubMedGoogle Scholar
  46. 46.
    Weiner, M. W. (1975). ATPase activity of kidney mitochondria stimulated by sodium. Am. J. Physiol., 228, 815PubMedGoogle Scholar
  47. 47.
    Gregg, C. M., Cohen, J. J., Black, A. J., Espeland, M. A. and Feldstein, M. C. (1978). Effects of glucose and insulin on metabolism and function of perfused rat kidney. Am. J. Physiol., 235, F52PubMedGoogle Scholar
  48. 48.
    Lo, C.-S. and Lo, T. N. (1979). Time course of the renal response to tri-odothyronine in the rat. Am. J. Physiol., 236, F9PubMedGoogle Scholar
  49. 49.
    Rossier, B. C., Rossier, M. and Lo, C. S. (1979). Thyroxine and sodium transport in the toad. Am. J. Physiol., 236, C117PubMedGoogle Scholar
  50. 50.
    Snart, R. S. (1972). The two stage nature of the aldosterone response. J. Steroid Biochem., 3, 129PubMedCrossRefGoogle Scholar
  51. 51.
    Hamlyn, J. M. and Duffy, T. (1978). Direct stimulation of human erythrocyte membrane (Na+ + K+) Mg ATPase activity in vitro by physiological concentrations of aldosterone. Biochem. Biophys. Res. Commun., 84, 458PubMedCrossRefGoogle Scholar

Copyright information

© The Society for the Study of Inborn Errors of Metabolism 1981

Authors and Affiliations

  • R. Fraser

There are no affiliations available

Personalised recommendations