Some regulatory principles in epithelial transport

  • R. Kinne


This symposium takes place as I am about to leave the Max-Planck-Institute for Biophysics after 13 years of stimulating and rewarding research. Looking through the work done during this period by myself and in collaboration with my colleagues, it becomes evident that almost all of the studies have been linked, more or less closely, to the question of regulatory principles in epithelial transport. In rereading these papers, it is interesting to note how they reflect the change in emphasis that was placed for a long time on the metabolic events occurring in the intracellular compartment to the emphasis that is placed nowadays on the events occurring at the barrier between the extra- and intracellular compartment, the cell membrane. Therefore in this chapter I would like to develop, taking my own work as guideline, some general aspects of regulation of transport. This is not intended to be a complete review; its main intent is to provide a framework of concepts concerning the basic principles of epithelial transport and the sites and selectivity of its regulation that might be useful for studies of transport phenomena in health and disease.


Sugar Permeability Lactate Fractionation Pyruvate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frömter, E., Rumrich, G. and Ullrich, K. J. (1973). Phenomenologic description of Na+, Cl and HCO3 absorption from proximal tubules of the rat kidney. Pfluegers Arch. Eur. J. Physiol., 343, 189CrossRefGoogle Scholar
  2. 2.
    Ullrich, K. J., Rumrich, G. and Klöss, S. (1976). Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium and buffer transport. Pfluegers Arch. Eur. J. Physiol., 364, 223CrossRefGoogle Scholar
  3. 3.
    Zwiebel, R., Wiechmann, J., Höhmann, B. and Kinne, R. (1970). Das Verhalten der Pyridinnucleotide und einiger Metaboliten in der Nierenrinde der Ratten bei Normoxie und Anoxie. Hoppe-Seyler’s Z. Physiol. Chem., 351, 854.PubMedCrossRefGoogle Scholar
  4. 4.
    György, A. Z. and Kinne, R. (1971). Energy source for transepithelial sodium transport in rat renal proximal tubules. Pfluegers Arch. Eur. J. Physiol., 327, 234CrossRefGoogle Scholar
  5. 5.
    Brendel, U., György, A. Z. and Kinne, R. (1977). Studies on the binding characteristics of antimycin A and albumin in relation to the inhibitor activity of the complex on rat proximal tubular sodium transport. Pfluegers Arch. Eur. J. Physiol., 372, 77CrossRefGoogle Scholar
  6. 6.
    Kinne, R. and György, A. Z. (1972). In vivo and in vitro studies on the energy source for transepithelial sodium transport in rat renal proximal tubule. In M. Hohenegger (ed.). Biochemische Aspekte der Nierenfunktion, pp. 97–110 (Munich: Goldmann)Google Scholar
  7. 7.
    Heidrich, H. G., Kinne, R., Kinne-Saffran, E. and Hannig, K. (1972). The polarity of the proximal tubule cell in rat kidney: different surface charges for the brush-border microvilli and plasma membranes from the basal infoldings. J. Cell Biol., 54, 232PubMedCrossRefGoogle Scholar
  8. 8.
    Kinne, R. and Kirsten, R. (1968). Der Einfluss von Aldosterone auf die Aktivität mitochondrialer and cytoplasmatischer Enzyme in der Rattenniere. Pfluegers Arch. Eur. J. Physiol., 300, 244CrossRefGoogle Scholar
  9. 9.
    Edelman, I. S. (1978). Candidate mediators in the action of aldosterone on Na+ transport. In J. Hoffman (ed.). Membrane Transport Processes, Vol. 1, p. 125. (New York: Raven Press)Google Scholar
  10. 10.
    Kirsten, R. and Kirsten, E. (1972). Redox state of pyridine nucleotides in renal response to aldosterone. Am. J. Physiol., 223, 229PubMedGoogle Scholar
  11. 11.
    Ullrich, K. J., Capasso, G., Rumrich, G., Papavassiliou, F. and Klōss, S. (1977). Coupling between proximal tubular transport processes, studied with ouabain, SITS and HCO3”-free solutions. Pfluegers Arch. Eur. J. Physiol., 368, 245CrossRefGoogle Scholar
  12. 12.
    Katz, A. J. and Epstein, F. H. (1967). The role of sodium-potassium-activated adenosinetriphosphatase in the reabsorption of sodium by the kidney. J. Clin. Invest., 46, 1999PubMedCrossRefGoogle Scholar
  13. 13.
    Gmaj, P., Murer, H. and Kinne, R. (1979). Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem. J., 178, 549PubMedGoogle Scholar
  14. 14.
    Murer, H., Hopfer, U. and Kinne, R. (1976). Sodium proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem. J., 154, 597PubMedGoogle Scholar
  15. 15.
    Kinne-Saffran, E. and Kinne, R. (1979). Further evidence for the existence of an intrinsic bicarbonate-stimulated Mg2+-ATPase in brush border membranes isolated from rat kidney cortex. J. Membrane Biol., 49, 235CrossRefGoogle Scholar
  16. 16.
    Loeschke, K., Uhlich, E. and Kinne, R. (1974). Stimulation of sodium transport and Na+-K+-ATPase activity in the hypertrophying rat cecum. Pfluegers Arch. Eur. J. Physiol., 346, 233.CrossRefGoogle Scholar
  17. 17.
    Schiffl, H. and Loeschke, K. (1977). Induction of Na-K-ATPase in plasma membranes of rat cecum mucosa by diet: time course and kinetics. Pfluegers. Arch. Eur. J. Physiol., 372, 83CrossRefGoogle Scholar
  18. 18.
    Ullrich, K. J. (1978). Renal transport of organic solutes. In G. Giebisch, D. C. Tosteson and H. H. Ussing (eds.). Handbook of Membrane Transport in Biology, Vol TV A, Transport Organs, pp. 413–448. (Berlin: Springer)Google Scholar
  19. 19.
    Kinne, R. (1978). Metabolic correlates of tubular transport. In G. Giebisch, D. C. Tosteson and H. H. Ussing (eds.). Handbook of Membrane Transport in Biology, Vol. IV A, Transport Organs, pp. 529–562. (Berlin: Springer)Google Scholar
  20. 20.
    Barac-Nieto, M., Murer, H. and Kinne, R. (1981). Lactate-Sodium cotransport in rat renal brush border membranes. Am. J. Physiol (In press)Google Scholar
  21. 21.
    Eveloff, J., Kinne, R., Kinne-Saffran, E., Murer, H., Silva, P., Epstein, F.H., Stoff, J. and Kinter, W. B. (1978). Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland. Pfluegers Arch. Eur. J. Physiol., 378, 87CrossRefGoogle Scholar
  22. 22.
    Evers, C., Murer, H. and Kinne, R. (1978). Effect of parathyrin on the transport properties of isolated renal brush-border vesicles. Biochem. J., 172, 49PubMedGoogle Scholar
  23. 23.
    Stoll, R., Kinne, R., Murer, H., Fleisch, H. and Bonjour, J.-P. (1979). Phosphate transport by rat renal brush border membrane vesicles: influence of dietary phosphate, thyroparathyroidectomy, and 1,25-dihydroxyvitamin D3. Pfluegers Arch. Eur. J. Physiol., 380, 47CrossRefGoogle Scholar

Copyright information

© The Society for the Study of Inborn Errors of Metabolism 1981

Authors and Affiliations

  • R. Kinne

There are no affiliations available

Personalised recommendations