Skip to main content

Photosynthesis-irradiance relationships of epilithic algae measured in the laboratory and in situ

  • Conference paper
Periphyton of Freshwater Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 17))

Abstract

Complementary laboratory and in situ techniques were developed to measure photosynthesis-irradiance relationships of epilithic algae in the littoral zone of an oligotrophic lake in the Experimental Lakes Area, northwestern Ontario, Canada. SCUBA divers placed colonized granite plates in acrylic chambers and returned them to a nearby laboratory. Changes in dissolved inorganic carbon (DIC) in water overlying the benthic sample were monitored in response to a gradient in intensity of artificial light. The field technique isolated natural communities on rock, and attenuated available light using diffusers. In both methods, dark chambers were monitored in parallel.

Both laboratory and in situ observations conformed well to Michaelis-Menten description of the dependence of photosynthesis upon irradiance (r2>0.94) permitting estimation of the maximum rate of photosynthesis (\(C_{\max }^{gross}\)) and the half-saturation constant (I0.5). Carbon-14 uptake estimates of (\(C_{\max }^{gross}\)) and (I0.5) were 85% (±5%, SD) and 141% (±30%, SD) respectively, of corresponding DIC uptake estimates. In the light 14C values were significantly different from and intermediate between net and gross DIC uptake (P<0.001). The discrepancy between 14C and net DIC uptake decreased loglinearly with increasing irradiance (r = −0.76, P<0.001). Calculated depth profiles indicated substantial 14C uptake below the DIC-predicted compensation depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, H.L., 1971. Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecol. Monogr. 41: 97–127.

    Article  Google Scholar 

  • Armstrong, F.A.J. & Schindler, D.W., 1971. Preliminary chemical characterization of waters in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Board Can. 28: 171–187.

    Article  CAS  Google Scholar 

  • Blackman, F.A., 1905. Optima and limiting factors. Ann. Bot. 19: 281–295.

    Google Scholar 

  • Brunskill, G.J. & Schindler, D.W., 1971. Geography and bathymetry of selected lake basins, Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Board Can. 28: 139–155.

    Article  Google Scholar 

  • Castenholz, R.W., 1960. Seasonal changes in the attached algae of freshwater and saline lakes in the Lower Grand Coulee, Washington. Limnol. Oceanog. 5: 1–28.

    Article  Google Scholar 

  • Chrost, R.J. & Sikorska, U., 1976. The effect of pollution on photosynthetic activity of algae and physiological activity of bacteria in lake(s). Polskie Arch. Hydrobiol. 23: 357–364.

    CAS  Google Scholar 

  • Eichenberger, E. & Wuhrmann, K., 1975. Growth and photosynthesis during the formation of a benthic algae community. Verh. Internat. Verein. Limnol. 19: 2035–2042.

    Google Scholar 

  • Fee, E.J., 1973a. A numerical model for determining integral primary production and its application to Lake Michigan. J. Fish. Res. Board Can. 30: 1447–1468.

    Article  Google Scholar 

  • Fee, E. J., 1973b. Modelling primary production in waterbodies: a numerical approach that allows vertical inhomogeneities. J. Fish. Res. Board Can. 30: 1469–1473.

    Article  Google Scholar 

  • Fee, E.J., 1979. A relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnol. Oceanogr. 24: 401–416.

    Article  CAS  Google Scholar 

  • Fee, E.J., 1980. Important factors for estimating annual phytoplankton production in the Experimental Lakes Area. Can. J. Fish. Aquat. Sci. 37: 513–522.

    Article  Google Scholar 

  • Fogg, G.E., 1974. Oxygen-versus 14C-methodology, pp. 76–78. In: Vollenweider, R.A. (ed.). A Manual on Methods for Measuring Primary Production in Aquatic Environments. Blackwell Scientific Publ., Oxford.

    Google Scholar 

  • Goldman, C.R. & de Amezaga, E., 1975. Primary productivity in the littoral zone of Lake Tahoe, California - Nevada. Symp. Biol. Hung. 15: 49–62.

    Google Scholar 

  • Healey, F.P., 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 5: 281–286.

    Article  Google Scholar 

  • Hickman, M., 1971. Standing crops and primary productivity of the epipelon of two small ponds in North Somerset, U.K. Oecologia (Berl.) 6: 238–253.

    Article  Google Scholar 

  • Hunding, C., 1971. Production of benthic microalgae in the littoral zone of a eutrophic lake. Oikos 22:389–397, Copenhagen.

    Article  Google Scholar 

  • Hunding, C. & Hargrave, B.T., 1973. A comparison of benthic microalgal production measured by 14C and oxygen methods. J. Fish. Res. Board Can. 30: 309–312.

    Article  CAS  Google Scholar 

  • Hutchinson, G.E., 1976. A Treatise on Limnology. Vol. III. Limnological Botany. John Wiley and Sons, Toronto. 660 p.

    Google Scholar 

  • Jassby, A.D. & Piatt, T., 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547.

    Article  CAS  Google Scholar 

  • Loeb, S.L., 1981. An in situ method for measuring the primary productivity and standing crop of the epilithic periphyton community in lentic systems. Limnol. Oceanogr. 26: 394–399.

    Article  Google Scholar 

  • Mclntire, C.D. & Phinney, H.K., 1965. Laboratory studies of periphyton production and community metabolism in lotic environments. Ecol. Monogr. 35: 237–258.

    Article  Google Scholar 

  • Morris, I., Yentsch, C.M., & Yentsch, C.S., 1971. Relationship between light carbon dioxide fixation and dark carbon fixation by marine algae. Limnol. Oceanogr. 16: 854–858.

    Article  Google Scholar 

  • Pickett, J. M. & Myers, J., 1966. Monochromatic light saturation curves for photosynthesis in Chlorella. Plant Physiol. 41: 90–98.

    Article  PubMed  CAS  Google Scholar 

  • Platt, T., Denman, K.L. & Jassby, A.D., 1975. The mathematical prediction ofphytoplankton productivity. Can. Fish. Mar. Serv. Tech. Rep. 523. 110 p.

    Google Scholar 

  • Prokopowich, J., 1979. Chemical characterization of epilimnion waters of unenriched lakes in the Experimental Lakes Area, northwestern Ontario. Can. Fish. Mar. Serv. Tech. Rep. 873. iv + 41 p.

    Google Scholar 

  • Rabinowitch, E. & Govindjee., 1969. Photosynthesis. John Wiley and Sons, Inc. 173 p.

    Google Scholar 

  • Riggs, D.R., 1963. The Mathematical Approach to Physiological Problems. M.I.T. Press. Massachusetts, U.S.A. 445 p.

    Google Scholar 

  • Schindler, D.W., 1966. A liquid scintillation method for measuring carbon-14 uptake in photosynthesis. Nature 211: 844–845.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D.W., Frost, V.E. & Schmidt, R.V., 1973. Production of epilithiphyton in two lakes of the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Board Can. 30: 1511–1524.

    Article  CAS  Google Scholar 

  • Shearer, J.A., 1976a. Light extinction measurements in the Experimental Lakes Area -1974 data. Can. Fish. Mar. Serv. Tech. Rep. 615.

    Google Scholar 

  • Shearer, J.A., 1976b. Phytoplankton primary production in the Experimental Lakes Area using an incubator technique - 1974 data. Can. Fish. Mar. Serv. Tech. Rep. 616.

    Google Scholar 

  • Sheldon, R. b. & Boylen, C.W., 1975. Factors affecting the contribution by epiphytic algae to the primary productivity of an oligotrophic freshwater lake. Appl. Microbiol. 30: 657–667.

    PubMed  CAS  Google Scholar 

  • Sládečková, A., 1962. Limnological investigation methods for the periphyton (‘Aufwuchs’) community. Bot. Rev. 28: 286–350.

    Article  Google Scholar 

  • Stainton, M.P., 1973. A syringe gas-stripping procedure for gaschromatographic determination of dissolved inorganic and organic carbon in fresh water and carbonates in sediments. J. Fish. Res. Board Can. 30: 1441–1445.

    Article  CAS  Google Scholar 

  • Steemann Nielsen, E. & Hansen, V.K., 1959. Measurements with the carbon-14 technique of the respiration rates in natural populations of phytoplankton. Deep-Sea Res. 5: 222–233.

    Google Scholar 

  • Stockner, J.G. & Armstrong, F.A.J., 1971. Periphyton of the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Board Can. 28: 215–229.

    Article  Google Scholar 

  • Strickland, J.D.H., 1960. Measuring the production of marine phytoplankton. J. Fish. Res. Board Can. Bull. 122. 172 p.

    Google Scholar 

  • Szczepanská, W., 1968. Vertical distribution of periphyton in the Lake Mikolajskie. Pol. Arch. Hydrobiol. 15: 177–182.

    Google Scholar 

  • Tolbert, N.E., 1974. Photorespiration, p. 474–504. In: Stewart, W.D.P. (ed.). Algal Physiology and Biochemistry. University of California Press, Berkeley, California.

    Google Scholar 

  • Turner, M.A., 1981. Haptobenthic photosynthesis. M.Sc. Thesis, University of Manitoba, Winnipeg, Manitoba. 116 p. + xli.

    Google Scholar 

  • Vollenweider, R.A., 1965. Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. Mem. Ist. Ital. Idrobiol. Suppl. 18: 425–457.

    Google Scholar 

  • Warming, E., 1923. Økologiens Grunformer udkas til en systematisk Ordning. K. Dan. Vidensk.-Selsk. Skr. Naturw. Mat. Afd. 8 Raekke IV: 119–187.

    Google Scholar 

  • Wetzel, R.G., 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake. Int. Rev. ges. Hydrobiol. 49:1 Warming, E., 1923. Økologiens Grunformer udkas til en systematisk Ordning. K. Dan. Vidensk.-Selsk. Skr. Naturw. Mat. Afd. 8 Raekke IV: 119–187. 61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robert G. Wetzel

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Dr W. Junk Publishers, The Hague

About this paper

Cite this paper

Turner, M.A., Schindler, D.W., Graham, R.W. (1983). Photosynthesis-irradiance relationships of epilithic algae measured in the laboratory and in situ . In: Wetzel, R.G. (eds) Periphyton of Freshwater Ecosystems. Developments in Hydrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7293-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7293-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7295-7

  • Online ISBN: 978-94-009-7293-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics