Environmental factors affecting hatching of rotifer (Brachionus plicatilis) resting eggs

  • G. Minkoff
  • E. Lubzens
  • D. Kahan
Part of the Developments in Hydrobiology book series (DIHY, volume 14)


Hatching experiments were carried out on a population of Brachionus plicatilis (Dor strain) resting eggs produced in batch laboratory cultures under controlled conditions and then stored for at least one month at 4°C in the dark. Light was found to be obligatory for termination of dormancy. Over the temperature range of 10–30°C (at 9.0‰ salinity), hatching was optimal (40–70%) at 10–15°C and decreased linearly with the rise in incubation temperature. Resting eggs incubated over a salinity range of 9–40‰ (at 15°C) showed optimal hatching at 16‰. Incubation of resting eggs in distilled water permitted normal embryonic development, but neonates died at eclosion. Presence of algae, Chlorella stigmatophora (0.5 × 106 cell ml−1), was found to aid hatching.


rotifers resting eggs hatching temperature salinity light algae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clegg, J. S., 1964. The control of emergence and metabolism by external osmotic pressure and the role of free glycerol in developing cysts of Artemia salina. J. exp. Biol. 41: 879–892.PubMedGoogle Scholar
  2. Gilbert, J. J., 1974. Dormancy in rotifers. Trans, am. Microsc. Soc. 93: 490–513.CrossRefGoogle Scholar
  3. Grice, G. D. & Marcus, N., H., 1981. Dormant eggs of marine copepods. Oceanogr. mar. Biol. Ann. Rev. 19: 125–140.Google Scholar
  4. Ito, T., 1960. On the culture of mixohaline rotifer Brachionus plicatilis O.F. Müller in the sea water. Rep. Fac. Fish. Pref. Univ. Mie 3: 708–740 (in Japanese).Google Scholar
  5. Jennings, R. H. & Whittaker, D. M., 1941. The effect of salinity upon the rate of excystment of Artemia. Biol. Bull. 80: 194–201.CrossRefGoogle Scholar
  6. Johnson, J. K., 1980. Effect of temperature and salinity on production and hatching of dormant eggs of Acartia californiensis (Copepoda) in an Oregon estuary. Fish. Bull. 77: 567–584.Google Scholar
  7. Kasahara, S., Onbé, T. & Kamigaki, M., 1975. Calanoid copepod eggs in sea-bottom muds. 3. Effects of temperature, salinity and other factors on the hatching of resting eggs of Tortanus forcipatus. Mar. Biol. 31: 31–35.CrossRefGoogle Scholar
  8. Kasahara, S. & Uye, S., 1979. Calanoid copepod eggs in sea-bottom muds. 5. Seasonal changes in hatching of subitaneous and diapause eggs of Tortanus forcipatus. Mar. Biol. 55: 63–68.CrossRefGoogle Scholar
  9. Lite, J. C. & Whitney, D. D., 1925. The role of aeration in the hatching of fertilized eggs of rotifers. J. exp. Zool. 43: 1–9.CrossRefGoogle Scholar
  10. Lubzens, E., 1981. Rotifer resting eggs and their application to marine aquaculture. Europ. Maricult. Soc. Spec. Publ. 6: 163–179.Google Scholar
  11. Lubzens, E., Fishier, R. & Berdugo-White, V., 1980. Induction of sexual reproduction and resting egg production in Brachionus plicatilis reared in sea water. Hydrobiologia 73: 55–58.CrossRefGoogle Scholar
  12. McLaren, I. A., 1966. Predicting development rate of copepod eggs. Biol. Bull. 131: 457–469.CrossRefGoogle Scholar
  13. Nipkow, F. 1958. Beobachtungen bei der Entwicklung des Dauereies von Brachionus calyciflorus Pallas. Schweiz. Z. Hydrol. 20: 186–194.CrossRefGoogle Scholar
  14. Pancella, J. R. & Stross, R. G., 1963. Light induced hatching of Daphnia resting eggs. Chesapeake Sci. 4: 135–140.CrossRefGoogle Scholar
  15. Pourriot, R., Rougier, C. & Benest, D., 1980. Hatching of Brachionus rubens O.F. Müller resting eggs (Rotifers). Hydrobiologia 73: 51–54.CrossRefGoogle Scholar
  16. Pourriot, R., Rougier, C. & Benest, D., 1981. Rôle de la lumière et de la temperature dans l’eclosion des oeufs de durée de Brachionus rubens Ehr. (Rotifère). Neth. J. Zool. 31: 637–649.CrossRefGoogle Scholar
  17. Ruttner-Kolisko, A., 1969. Kreuzungsexperimente zwischen Brachionus urceolaris und Brachionus quadridentatus, ein Beitrag zur Fortpflanzungsbiologie der heterogenen Rotatoria. Arch. Hydrobiol. 65: 397–412.Google Scholar
  18. Ruttner-Kolisko, A., 1972. Rotatoria. Binnengewässer 26: 99–233.Google Scholar
  19. Sorgeloos, P., 1980. The use of the brine shrimp Artemia in aquaculture. In: Persoone, G., Sorgeloos, P., Roels, O. & Jaspers, E. (Eds.), The brine shrimp Artemia, 3. Ecology, Culturing, Use in Aquaculture. Universa Press, Wetteren, Belgium.Google Scholar
  20. Sorgeloos, P. & Persoone, G., 1975. Technological improvements for the cultivation of invertebrates as food for fishes and crustaceans. 2. Hatching and culturing of the brine shrimp Artemia salina L. Aquaculture 6: 303–317.CrossRefGoogle Scholar
  21. Strickland, J. D. H. & Parsons, T. R., 1960. A manual of sea water analysis. Bull. Fish. Res. Bd Can. 125: 185 pp.Google Scholar
  22. Stross, R. G., 1966. Light and temperature requirements for diapause development and release in Daphnia. Ecology 47: 368–374.CrossRefGoogle Scholar
  23. Stross, R. G., 1971, Photoperiod control of diapause in Daphnia. 4. Light and CO2-sensitive phases within the cycle of activation. Biol. Bull, 140: 137–155.PubMedCrossRefGoogle Scholar
  24. Uye, S. & Fleminger, A., 1976. Effects of various environmental factors on egg development of several species of Acartia in southern California. Mar. Biol. 38: 253–262.CrossRefGoogle Scholar
  25. Walker, K. F., 1981. A synopsis of ecological information on the saline lake rotifer Brachionus plicatilis Muller 1786. Hydrobiologia 81: 159–167.CrossRefGoogle Scholar
  26. Wurdak, E. SM Gilbert, J. J. & Jagels, R., 1978. Fine structure of the resting eggs of the rotifers Brachionus calyciflorus and Asplanchna sieboldi. Trans, am. Microsc. Soc. 97: 49–72.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1983

Authors and Affiliations

  • G. Minkoff
    • 1
  • E. Lubzens
    • 1
  • D. Kahan
    • 2
  1. 1.Israel Oceanographic & Limnological ResearchHaifaIsrael
  2. 2.Deparment of ZoologyThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations