Annual dynamics and production of rotifers in an eutrophication gradient in the Baltic Sea

  • Sif Johansson
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 14)


Spatial and temporal fluctuations in rotifer abundance have been monitored along a trophic gradient in the northern Baltic. The most common rotifer was Synchaeta spp., which had one abundance peak in June and one in September–October. Only during the latter period was the abundance significantly higher in the eutrophic basin compared to the reference area. The annual production of Synchaeta spp. was about double in the eutrophic basin. A positive correlation between Synchaeta spp. biomass and phytoplankton biomass was obtained during the autumn, but not during the early summer peak, although the phytoplankton community was dominated by the same species. Keratella quadrata, K. cochlearis and K. cruciformis were most abundant in August–September, and all three species had increased abundance in the eutrophic basin.


rotifers annual fluctuation eutrophication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackefors, H., 1972. The amount of Zooplankton expressed as numbers, wet weight and carbon content in the Askö area. Medd. Havsfiskelab., Lysekil, 129 pp. (mimeogr.).Google Scholar
  2. Dumont, H., 1977. Biotic factors in the population dynamics of rotifers. Arch. Hydrobiol. Beih8: 98–122.Google Scholar
  3. Dybern, B. I., Ackefors, H. & Elmgren, R., 1976. Recommendation on methods for marine biological studies in the Baltic Sea. Baltic mar. Biol.1, 98 pp.Google Scholar
  4. Fuller, D. R., Stemberger, R. S. & Gannon, J. E., 1977. Limnetic rotifers as indicators of trophic change. J. Elisha Mitchell Sci. Soc.93: 104–113.Google Scholar
  5. Gannon, J. E. & Stemberger, R. S., 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans, am. microsc. Soc.97: 16–35.CrossRefGoogle Scholar
  6. Gliwicz, Z. M., 1969. The share of algae, bacteria and trypton in the food of the pelagic Zooplankton of lakes with various trophic characteristics. Bull. Acad. Sci.3: 159–165.Google Scholar
  7. Gliwicz, Z. M. & Hillbricht-Ilkowska, A., 1972. Efficiency of the ultization of nannoplankton primary production by communities of filter feeding animals measured in situ. Verh. int. Ver. Limnol.18: 197–203.Google Scholar
  8. Hernroth, L. & Viljamaa, H., 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. Baltic mar. Biol.6, 15 pp.Google Scholar
  9. Hillbricht-Ilkowska, A., Spodniewska, I. & Weglenska, T., 1979. Changes in the phytoplankton-zooplankton relationship connected with the eutrophication of lakes. Symp. Biol. Hung.19: 59–75.Google Scholar
  10. Hobro, R., 1979. Annual phytoplankton succession in a coastal area in the northern Baltic. In Naylor, E. & Hartnoll, R. G. (Eds.), Cyclic phenomena in marine plants and animals. Pergamon Press, Oxford, N.Y. pp. 3–10.Google Scholar
  11. Hofmann, W., 1977. The influence of abiotic environmental factors on population dynamics in planktonic rotifers. Arch. Hydrobiol. Beih.8: 77–83.Google Scholar
  12. Kankaala, P. & Wulff, F., 1981. Experimental studies on temperature dependent embryonic and postembryonic developmental rates of Bosmina longispina maritima (Cladocera) in the Baltic. Oikos36: 137–146.CrossRefGoogle Scholar
  13. Kott, P., 1953. Modified whirling apparatus for the subsampling of plankton. Austr. J. mar. freshwat. Res.4: 387–393.CrossRefGoogle Scholar
  14. Larsson, U. & Hagström, Ä., 1982. Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient. Mar. Biol.67: 57–70.CrossRefGoogle Scholar
  15. Lehmann, E. L., 1975. Nonparametrics, statistical methods based on ranks. Holden-Day, Inc., San Francisco, McGraw-Hill Internat. Book Co., New York. 457 pp.Google Scholar
  16. Melvasalo, T. & Viljamaa, H., 1975. Plankton composition in the Helsinki area. Merentutkimuslait Julk. J Havsforskningsinst. 239: 301–310.Google Scholar
  17. Mullin, M. M. 1969. Production of Zooplankton in the ocean: the present status and problems. Oceanogr. mar. Biol. Rev.7: 293–314.Google Scholar
  18. Naumann, E., 1923. Specielle Untersuchungen über die Ernäh-rungsbiologie und die natüurliche Nahrung der Copopoden und der Rotiferan des Limnoplanktons. Lunds Univ. Årsskrift N.F.2, 19: 1–17.Google Scholar
  19. Nauwerck, A., 1963. Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symb. bot. Ups.17: 1–163.Google Scholar
  20. Pourriot, R., 1977. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beih.8: 243–260.Google Scholar
  21. Radwan, S., 1980. The effect of some biotic and abiotic factors on the fertility of planktonic rotifers species. Hydrobiologia73: 59–62.CrossRefGoogle Scholar
  22. Sokal, R. R. & Rohlf, F. J., 1981. Biometry. The principles and practice of statistics in biological research. 2nd ed., W. H. Freeman & Co., San Francisco. 859 pp.Google Scholar
  23. Stemberger, R. S., 1981. A general approach to the culture of planktonic rotifers. Can. J. Fish, aquat. Sci.38: 721–724.CrossRefGoogle Scholar
  24. Stemberger, R. S. & Gannon, J. E., 1977. Multivariate analysis of rotifer distributions in lake Huron. Arch. Hydrobiol. Beih.8: 38–42.Google Scholar
  25. UNESCO, 1968. Zooplankton sampling. Monogr. oceanogr. Methodology. 174 pp.Google Scholar
  26. Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik. Mitt. int. Ber. Limnol.9: 1–38.Google Scholar
  27. Winberg, G. G., 1971. Methods for the estimation of production of aquatic animals. Academic Press, London, New York. 175 pp.Google Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1983

Authors and Affiliations

  • Sif Johansson
    • 1
  1. 1.Askö Laboratory, Institute of Marine EcologyUniversity of StockholmStockholmSweden

Personalised recommendations