Advertisement

Resting eggs in rotifers

  • Roger Pourriot
  • Terry W. Snell
Part of the Developments in Hydrobiology book series (DIHY, volume 14)

Abstract

The biology of resting eggs of monogonont rotifers is reviewed, covering literature published since the last major review by Gilbert (1974). The topics examined include resting egg production, morphology and species specificity, hatching, and evolutionary significance.

Four major determinants of resting egg production are identified: mictic female production, male activity and fertility, female susceptibility to fertilization, and fertilized female fecundity. Recent work in these four areas is discussed as well as resting egg production in natural populations. Resting egg morphology, particularly shell structure and internal organization, is compared among species. Recent reports on the control of resting egg hatching in the laboratory are examined and the importance of temperature, light, diet, and salinity is reviewed. Two hatching patterns are contrasted, the first where eggs hatch at regular intervals over extended periods and the second where hatching is synchronized to some environmental cue. A latent period after resting egg formation, during which no hatching occurs, is defined for several species. The adaptive features of resting eggs are outlined including their contribution to genetic variability through recombination, their provision for environmental escape by dormancy, and their colonizing function resulting from their ease of dispersal. The type of cue utilized to initiate mictic female production as well as the pattern of resting egg hatching is related to environmental predictability

Keywords

rotifers resting eggs dormancy hatching production morphology evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birky, C. W. & Gilbert, J. J., 1971. Parthenogenesis in rotifers: The control of sexual and asexual reproduction. Am. Zool. 11: 245–266.Google Scholar
  2. Blanchot, J. & Pourriot, R., 1982. Influence de trois facteurs de l’environment, lumière, temperature et salinité, sur l’eclosion des oeufs de durée d’un clone de Brachionus plicatilis (O.F. Müller) (Rotifère). C. r. Acad. Sei., Paris 295: 243–246.Google Scholar
  3. Bogoslovsky, A. S ., 1929. Observations on rotifer ecology. I. Some data on the ecology of Conochilus volvox Ehr., C. unicornis R. and Lacinularia socialis and observations on their resting eggs. Bull. Stat. biol. Bolchevo 3: 7–25.Google Scholar
  4. Bogoslovsky, A. S ., 1963. Materials to the study of the resting eggs of rotifers. Communication I. Byull. Mosk. Obshch. Ispyt. Prir. 68: 50-67. Bogoslovsky, A. S., 1967. Materials to the study of the resting eggs of rotifers. Communication 2. Byull. Mosk. Obshch. Ispyt. Prir. 72: 46–67.Google Scholar
  5. Bogoslovsky, A. S ., 1969. Materials to the study of the resting eggs of rotifers. Communication 3. Byull Mosk. Obshch. Ispyt. Prir. 74: 60–79.Google Scholar
  6. Clément, P., Pourriot, R. Rougier, C., 1976. Les facteurs exogenes et endogenes qui contrôlent l’apparition des males chez les Rotifères. Bull. Soc. zool. Fr. 101: 86–95.Google Scholar
  7. Clément, P. Pourriot, R., 1977. Cytoplasmic and chromosomal inheritance of the mictic reaction in a parthenogenetic clone of Notommata copeus. Arch. Hydrobiol. Beih. 8: 205-206.Google Scholar
  8. Clément, P. Pourriot, R., 1977. Cytoplasmic and chromosomal inheritance of the mictic reaction in a parthenogenetic clone of Notommata copeus. Arch. Hydrobiol. Beih. 8: 205–206.Google Scholar
  9. ence through several generations in a clone of the rotifer Notommata copeus. Hydrobiologia 73: 27-31.Google Scholar
  10. Cohen, D ., 1966. Optimizing reproduction in a randomly varying environment. J. theor. Biol. 12: 119–129.PubMedCrossRefGoogle Scholar
  11. Cohen, D ., 1967. Optimizing reproduction in a randomly varying environment when a correlation may exist between conditions at the time a choice has to be made and the subsequent outcome. J. theor. Biol. 16: 1–14.PubMedCrossRefGoogle Scholar
  12. Cohen, D., 1968. A general model of optimal reproduction in a randomly varying environment. J. Ecol. 56: 219 - 228.CrossRefGoogle Scholar
  13. Elgmork, K., 1980. Evolutionary aspects of diapause in freshwater copepods. In: Kerfoot, W. C. (Ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, N.H.: 411 - 417.Google Scholar
  14. Gilbert, J. J ., 1963. Contact chemoreception, mating behavior, and sexual isolation in the rotifer genus Brachionus. J. exp. Biol. 40: 625–641.Google Scholar
  15. Gilbert, J. J ., 1974. Dormancy in Rotifers. Trans, am. microsc. Soc. 93: 490–513.CrossRefGoogle Scholar
  16. Gilbert, J. J ., 1977. Mictic female production in monogonont rotifers. Arch. Hydrobiol. Beih. 8: 142–155.Google Scholar
  17. Gilbert, J. J., 1980a. Some effects of diet on the biology of the Rotifers Asplanchna and Brachionus. In: Smith, D. C. Tiffon, Y. (Eds.), Nutrition in the Lower Metazoa. Perg. Per., Oxford: 57 - 71.Google Scholar
  18. Gilbert, J. J ., 1980b. Female polymorphism and sexual reproduction in the Rotifer Asplanchna: evolution of their relationship and control by dietary alpha-tocopherol. Am. Nat. 116: 409–431.CrossRefGoogle Scholar
  19. Gilbert, J. J. Wurdak, E. S., 1978. Species-specific morphology of resting eggs in the Rotifer Asplanchna. Trans, am. microsc. Soc. 97: 330–339.CrossRefGoogle Scholar
  20. Halbach, U. Halbach-Keup, G., 1974. Quantitative Beziehungen zwischen Phytoplankton und der Populationsdynamik des Rotators Brachionus calyciflorus (Pallas). Befunde aus Laboratoriumexperimenten und Freilanduntersuchungen. Arch. Hydrobiol. 73: 273–309.Google Scholar
  21. Hino, A. Hirano, R., 1977. Ecological studies on the mechanism of bisexual reproduction in the rotifer Brachionus pli- catilis-II. Effects of cumulative parthenogenetic generation. Bull. jap. Soc. scient. Fish. 43: 1147–1155.Google Scholar
  22. Ito, T ., 1958. Studies on the ’Mizukawari’ in eel-culture ponds. 10. The density of dormant eggs of rotifer on bottom deposits in eel-culture ponds. Rep. Fac. Fish. Prefect. Univ. Mie 3: 170–177.0Google Scholar
  23. Ito, T ., 1960. On the culture of the mixohaline Rotifer Brachionus plicatilis O. F. Müller in the sea water. Rep. Fac. Fish. Prefect. Univ. Mie 3: 708–740.Google Scholar
  24. King, C. E., 1967. Food, age, and the dynamics of a laboratory population of rotifers. Ecology 48: 111 - 128.CrossRefGoogle Scholar
  25. King, C. E ., 1970. Comparative survivorship and fecundity of mictic and amictic female rotifers. Physiol. Zool. 43: 206–212.Google Scholar
  26. King, C.E ., 1977. Genetics of reproduction, variation, and adaptation in rotifers. Arch. Hydrobiol. Beih. 8: 187–201.Google Scholar
  27. King, C. E., 1980. The genetic structure of Zooplankton populations. In: Kerfoot, W. C. (Ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, N.H.: 315 - 328.Google Scholar
  28. King, C. E. Snell, T. W., 1977. Sexual recombination in rotifers. Heredity 39: 357 - 360.Google Scholar
  29. Lubzens, E ., 1981. Rotifer resting eggs and their application to marine aquaculture. Spec. Pubi. eur. Maricult. Soc. 6: 163–180.Google Scholar
  30. Lubzens, E., Fishier, R. Berdugo-White, V., 1980. Induction of sexual reproduction and resting egg production in Brachionus plicatilis reared in sea water. Hydrobiologia 73: 55 - 58.Google Scholar
  31. Manning, J. T. Jenkins, J., 1980. The ’balance’ argument and the evolution of sex. J. theor. Biol. 86: 593-601.Google Scholar
  32. Maynard-Smith, J., 1978. The Evolution of Sex. Cambridge University Press, Cambridge.Google Scholar
  33. Muenchow, G., 1978. A note on the timing of sex in asexual/ sexual organisms. Am. Nat. 112: 774-779.Google Scholar
  34. Nipkow, F ., 1961. Die Rädertiere im Plankton des Zürichsees und ihre Entwicklungsphasen. Schweiz. Z. Hydrol. 23: 398–461.CrossRefGoogle Scholar
  35. Piavaux, A. Magis, N., 1970. Données complémentaires sur la localisation de la chitine dans les enveloppes des oeufs de Rotifères. Ann. Soc. r. zool. Belg. 100: 49-59.Google Scholar
  36. Pourriot, R., 1967. Maies et oeufs durables de quelques Rotifères. Bull. Soc. zool. Fr. 92: 185-192.Google Scholar
  37. Pourriot, R ., 1973. Recherches sur la biologie des Rotifères. 3. Fécondité et durée de vie comparée chez les femelles mic- tiques, fecondées et non fecondées, de quelques espèces. Ann. Limnol. 9: 241–258.CrossRefGoogle Scholar
  38. Pourriot, R. Rougier, C., 1976. Influence de l’âge des parents sur la production de femelles mictiques chez Brachionus calyciflorus (Pallas) et B. rubens Ehr. (Rotifères). C. r. Acad. Sci. Paris 283: 1497–1500.Google Scholar
  39. Pourriot, R. Clément, P., 1977. Comparison of the control of mixis in three clones of Notommata copeus. Arch. Hydrobiol. Beih. 8: 174–177.Google Scholar
  40. Pourriot, R. & Rougier, C., 1979. Influences conjugées du groupement et de la qualité de la nourriture sur la reproduction de Brachionus plicatilis O. F. Müller (Rotifère). Neth. J. Zool. 29: 242–264.CrossRefGoogle Scholar
  41. Pourriot, R. Clément, P., 1981. Action de facteurs externes sur la reproduction et le cycle reproducteur des Rotifères. Acta. Oecol., Oecol. Gen. 2: 135–151.Google Scholar
  42. Pourriot, R., Rougier, C. & Benest, D., 1981. Role de la lumiere et de la temperature dans l’éclosion des oeufs de duree de Brachionus rubens Ehr. (Rotifère). Neth. J. Zool. 31: 637–649.CrossRefGoogle Scholar
  43. Pourriot, R., Rougier, C. & Benest, D., 1981. Role de la lumiere et de la temperature dans l’éclosion des oeufs de duree de Brachionus rubens Ehr. (Rotifère). Neth. J. Zool. 31: 637-649.Google Scholar
  44. Pourriot, R., Rougier, C. & Benest, D., 1981. Role de la lumiere et de la temperature dans l’éclosion des oeufs de duree de Brachionus rubens Ehr. (Rotifère). Neth. J. Zool. 31: 637-649.Google Scholar
  45. Rougier, C. Pourriot, R., 1977. Aging and control of reproduction in Brachionus calyciflorus (Pallas) (Rotifère). Exp. Gerontol. 12: 137-151.Google Scholar
  46. Ruttner-Kolisko, A., 1946. Ueber das Auftreten unbefruchteter ’Dauereier’ bei Keratella quadrata. Öst. zool. Z. 1: 179 - 191.Google Scholar
  47. Ruttner-Kolisko, A., 1974. Plankton Rotifers. Biology and Taxonomy. Binnengewässer 26: 146 pp.Google Scholar
  48. Shull, A. F., 1913. Inheritance in Hydatina senta. 1. Viability of the resting eggs and the sex ratio. J. exp. Zool. 15: 49-89.Google Scholar
  49. Snell, T. W. Bieberich, C. J., in preparation. Factors modulating mictic female production in the rotifer Brachionus plicatilis.Google Scholar
  50. Snell, T. W. Hawkinson, C. A., in press. Behavioral reproductive isolation among populations of the rotifer Brachionus plicatilis. Evolution.Google Scholar
  51. Snell, T. W., Burke, B. L. & Messur, S. D., in press. Size and distribution of resting eggs in a natural population of Brachionus plicatilis. Gulf Research Reports.Google Scholar
  52. Snell, T. W. Bieberich, C. J., in prep. Factors influencing resting egg hatching in Brachionus plicatilis.Google Scholar
  53. Templetion, A. R. Levin, D. A., 1979. Evolutionary consequences of seed pools. Am. Nat., 114: 232-249.Google Scholar
  54. Williams, G. C., 1975. Sex and Evolution. Princeton University Press, Princeton.Google Scholar
  55. Wurdak, E. S., Gilbert, J. J. Jagels, R., 1978. Fine structure of the resting eggs of the rotifers Brachionus calyciflorus and Asplanchna sieboldi. Trans. Am. microsc. Soc. 97: 49–72.PubMedCrossRefGoogle Scholar
  56. Wurdak, E. S., Gilbert, J. J. Jagels, R., 1978. Fine structure of the resting eggs of the rotifers Brachionus calyciflorus and Asplanchna sieboldi. Trans. Am. microsc. Soc. 97: 49–72.Google Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1983

Authors and Affiliations

  • Roger Pourriot
    • 1
  • Terry W. Snell
    • 2
  1. 1.École Normale SuperieureLaboratoire de ZoologieParis, Cedex 05France
  2. 2.Division of ScienceUniversity of TampaTampaUSA

Personalised recommendations