Advertisement

The significance of mating processes for the genetics and for the formation of resting eggs in monogonont rotifers

  • A. Ruttner-Kolisko
Part of the Developments in Hydrobiology book series (DIHY, volume 14)

Abstract

Crossbreeding experiments with three geographically distinct strains (E, S, and L) of the rotifer Brachionus plicatilis have been carried out in an attempt to elucidate the apparent male sterility of strain L, which is unable to produce resting eggs.

The 9 crossing possibilities of the three strains have been investigated in 27 experiments. The results refute the concept of male sterility. L-males copulate successfully with mictic as well as with amictic females of strains E and S. Fertilized amictic E and S females produce defective resting eggs, which have only one thin shell and.which disintegrate after deposition. L-females cannot, as a rule, be fertilized. Moreover, crosses between strain E and S are succesful only in one direction; the reciprocal crosses failed.

To explain the present results a hypothesis is suggested that the thickness of the body wall of newborn females differs in the three strains, and between mictic and amictic individuals. A sequence of gradually increasing body wall thickness of all types of females involved, together with a comparably increasing penetration ability of the males of strain E, S, and L explains the success or failure of all crosses, including the unilateral cross E X S.

Keywords

rotifers genetics brachionidae mating behaviour resting eggs literature view 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloia, R. C. & Moretti, R. L., 1973. Mating behavior and ultra- structural aspects of copulation in the rotifer Asplanchna brightwelli. Trans, am. microsc. Soc. 92: 371–380.CrossRefGoogle Scholar
  2. Aloia, R. C. & Moretti, R. L., 1974. Spermiogenesis and cytochemistry of the functional spermatozoon of the rotifer Asplanchna brightwelli. Biol. Reprod. 11: 301–318.PubMedCrossRefGoogle Scholar
  3. Beauchamp, P. de, 1951. Sur la variabilité spécifique dans le genre Asplanchna. Bull. biol. Fr. belg. 85: 137–175.Google Scholar
  4. Bentfeld, M. E ., 1971. Studies of the ovogenesis in the rotifer Asplanchna. 1. Fine structure of the female reproductive system. 2. Oocyste growth and development. Z. Zellforsch. 115: 165-183, 184–195.PubMedCrossRefGoogle Scholar
  5. Birky, C. W. Jr., 1965. Studies on the physiology and genetics of the rotifer Asplanchna. 2. The genetic basis of a case of male sterility. J. exp. Zool. 158: 349-356.Google Scholar
  6. Birky, C. W., Jr., 1967. Studies on the physiology and genetics of the rotifer Asplanchna 3. Results of outcrossing, selfing, and selection. J. exp. Zool. 164: 105-116.Google Scholar
  7. Birky, C. W., Bignami, R. Z. & Bentfeld, M. J., 1967. Nuclear and cytoplasmatic DNA synthesis in adult and embryonic rotifers. Biol. Bull. 113: 502–509.CrossRefGoogle Scholar
  8. Birky, C. W. & Gilbert, J. J., 1971. Parthenogenesis in rotifers: the control of sexual and asexual reproduction. Am. Zool. 11: 245-266.Google Scholar
  9. Bogoslovski, A. S., 1929. Observations on rotifer ecology. 1. Some data on the ecology of Conochilus volvox, C. unicornis and Lacinularia socialis, and observations on their resting eggs. Zap. Biol. Stat. Bolsevo. 3: 7-25 (in Russian).Google Scholar
  10. Bogoslovski, A. S., 1963. Materials to the study of the resting eggs of rotifers. 1. Byull. Mosk. Obshch. Ispyt. Prir. 68: 50-67 (in Russian).Google Scholar
  11. Büchner, H., Mutschier, C. & Kiechle, H., 1967. Die Determination der Männchen- und Dauereiproduktion. Biol. Zbl. 86: 599-621.Google Scholar
  12. Buchner, H., Tiefenbacher, L., Kling, R. & Preißler, K., 1970. Über die physiologische Bedeutung des Magen-Darm-Ru- dimentes der Männchen von Asplanchna sieboldi. Z. vergl. Physiol. 67: 453-454.Google Scholar
  13. Clement, P., 1969. Premières observations sur l’ultrastructure comparée des téguments des rotifères. Vie Milieu 20:461 -482.Google Scholar
  14. Clement, P., 1977a. Introduction à la photobiologie des rotifères; approche ultrastructurale et experimentale. Thèse 7716, Univ. Lyon I.Google Scholar
  15. Clement, P, 1977b. Ultrastructural research on rotifers. 1. Intern. Rotifer Symp. Exp. Limnol. 8: 270-289.Google Scholar
  16. Gilbert, J., 1963. Contact chemoreception, mating behavior, and sexual isolation in the rotifer genus Brachionus. J. exp. Biol. 40: 625-641.Google Scholar
  17. Gilbert, J. J., 1974. Dormancy in rotifers. Trans, am. microsc. Soc. 93: 490-513.Google Scholar
  18. Gilbert, J. J., Birky, C. W. & Wurdak, E., 1979. Taxonomic relationships of Asplanchna brightwelli, A. intermedia, and A. siboldi. Arch. Hydrobiol. 87: 224-242.Google Scholar
  19. Jones, P.A., Gilbert, J. J., 1976. Male haploidy in rotifers: relative DNA content of nuclei from male and female Asplanchna. J. exp. Zool. 198: 281-285.Google Scholar
  20. King, C. E., 1971. Adaptation of rotifers to seasonal variation. Ecology 53: 408 - 418.Google Scholar
  21. King, C. E., 1977. Genetics of reproduction, variation, and adaptation in rotifers. Arch. Hydrobiol. Beih. 8: 187-201.Google Scholar
  22. King, C. E., 1980. The genetic structure of Zooplankton populations. In: Kerfoot, W. C. (Ed.), Evol. Ecol. Zoopl. Comm., University Press, New England: 315 - 328.Google Scholar
  23. King, C. E. & Snell, T. W., 1977a. Sexual recombination in rotifers. Heredity 39: 357 - 360.CrossRefGoogle Scholar
  24. King, C. E. & Snell, T. W., 1977b. Genetic basis of amphoteric reproduction in rotifers. Heredity 39: 361 - 364.CrossRefGoogle Scholar
  25. Koehler, J. K., 1965. An electron microscopic study of the dimorphic spermatozoa of Asplanchna. I. The adult testis. Z. Zellforsch. 67: 57-76.Google Scholar
  26. Koehler, J. K., 1966. Some comparative fine structure relationships of the rotifer integument. J. exp. Zool. 162: 231-243.Google Scholar
  27. Koehler, J. K. & Birky, C. W., 1966. An electron microscopic study of the dimorphic spermatozoa of Asplanchna. 2. The development of atypical spermatozoa. Z. Zellforsch. 70: 303-321.Google Scholar
  28. Pejler, B., 1956. Introgression in planctonic rotatoria. Evolution 10: 246 - 261.CrossRefGoogle Scholar
  29. Piavaux, A., 1970. L’origine d’enveloppe chitineuse des oeufs de deux rotifères du genre Euchlanis. Ann. Soc. r. zool. Belg. 100: 129-137.Google Scholar
  30. Remane, A., 1929-]933. Rotatoria. Bronn’s Klassen und Ordnungen. Bd. IV. Abt. 2/1.Google Scholar
  31. Robotti, C., 1975. Chromosome complement and male haploidy of Asplanchna priodonta. Experientia 31: 1270 - 1272.PubMedCrossRefGoogle Scholar
  32. Ruttner-Kolisko, A., 1946. Über das Auftreten unbefruchteter Dauereier bei Keratella quadrata. öst. zool. Z. 1: 179 - 181.Google Scholar
  33. Ruttner-Kolisko, A., 1963. The interrelationships of the Rotatoria. In: Dougherty Et al. (Eds.), The Lower Metazoa. University of California Press: 263 - 273.Google Scholar
  34. Ruttner-Kolisko, A., 1969. Kreuzungsexperimente zwischen Brachionus urceolaris und Br. quadridentatus. Arch. Hy- drobiol. 65: 397-412.Google Scholar
  35. Ruttner-Kolisko, A., 1981. Preliminary crossing experiments with three different strains of the rotifer Brachionus plicati- lis. J. ber. biol. Stat. Lunz. 4: 195-205.Google Scholar
  36. Shull, A. F., 1921. Chromosomes and life cycle of Hydatina senta. Biol. Bull. 41: 55-61.Google Scholar
  37. Snell, T. W., 1979. Competition and population structure in rotifers. Ecology 60: 494 - 502.CrossRefGoogle Scholar
  38. Storch, O., 1924. Die Eizellen der heterogonen Rädertiere. Zool. Jb. Abt. Anat. 45: 309-404.Google Scholar
  39. Tauson, A., 1924. Die Reifungsprozesse der parthenogeneti- schen Eier von Asplanchna intermedia. Z. Zellforsch. 1: 57 - 84.CrossRefGoogle Scholar
  40. Tauson, A., 1927. Die Spermatogenese bei Asplanchna intermedia. Z. Zellforsch. 4: 652 - 681.CrossRefGoogle Scholar
  41. Weber, E. F., 1888. Notes sur quelques rotateurs des environs de Genève. Arch. Biol. Liège 8: 647-722.Google Scholar
  42. Whitney, D. D ., 1913. An explanation of the non-production of fertilized eggs by adult male-producing females in a species of Asplanchna. Biol. Bull. 25: 318–321Google Scholar
  43. Whitney, D. D., 1917. The production of functional and rudimentary spermatozoa in rotifers. Biol. Bull. 33: 305-315.Google Scholar
  44. Whitney, D. D ., 1918. Further studies on the production of functional and rudimentary spermatozoa in rotifers. Biol. Bull. 34: 325–334.CrossRefGoogle Scholar
  45. Whitney, D. D., 1929. The chromosome cycle in the rotifer Asplanchna amphora. J. Morphol. Physiol. 47: 415-433.Google Scholar
  46. Wurdak, E ., Gilbert, J. J. & Jagels, R., 1977. Resting egg ultra- structure and formation of the shell in Asplanchna sieboldi and Brachionus calyciflorus. Arch. Hydrobiol. Beih. 8: 298–302.Google Scholar
  47. Wurdak, E., Gilbert, J. J. & Jagels, R., 1978. Fine structure of the resting eggs of the rotifers Brachionus calyciflorus and Asplanchna sieboldi. Trans, am. microsc. Soc. 97: 49-72.Google Scholar
  48. Wurdak, E. & Gilbert, J. J., 1980. Ultrastructure and histochemistry of the rudimentary gut of male Asplanchna sieboldi. Hydrobiologia 73: 123 - 126.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1983

Authors and Affiliations

  • A. Ruttner-Kolisko
    • 1
  1. 1.Biological Station LunzAustrian Academy of ScienceLunz a. SeeAustria

Personalised recommendations