Skip to main content

Relations between Production and Biomass of phytoplankton in four Swedish lakes of different trophic status and humic content

  • Chapter
Forest Water Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 13))

  • 76 Accesses

Abstract

Production and biomass values from phytoplankton populations in four different Swedish lakes were analysed. The production in all lakes was directly proportional to biomass during homothermal periods. When the lakes were stratified there was a strong negative relation between specific growth rate and biomass. The data fitted to a logistic density dependent growth equation of the form: dB/dt = µ mB(1-B • K-1) where B is the biomass, µ m the maximum specific growth rate and K the carrying capacity. The equation was used to derive the parameters µµ m -1 and carrying capacity (the maximum possible biomass). These parameters were then discussed in relation to light climate, phosphorus concentration and humic content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren, G., 1978. Growth of Oscillatoria agardhii in chemostat culture. 2. Dependence of growth constants on temperature. Mitt. int. Ver. Limnol. 21: 88–102.

    CAS  Google Scholar 

  • Bloesch, J., Stadelman, P. & Buhrer, H., 1977. Primary production, mineralization and sedimentation in the eupho- tic zone of two Swiss lakes. Limnol. Oceanogr. 19: pp. 511–526.

    Article  Google Scholar 

  • Blomqvist, P., Heyman, U. & Grundström, R., 1981. The structure of the pelagic ecosystem in Lake Siggeforasjön. Scripta Limnol. Ups. A: 522.

    Google Scholar 

  • Boström, B. & Petersson, K., 1977. The spring development of phytoplankton in Lake Erken, Freshwat. Biol. 7: 327–335.

    Google Scholar 

  • Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fish Bull. U.S.A. 70: 1063–1085.

    Google Scholar 

  • Goldman, J. C. & Carpenter, E. J., 1974. A kinetic approach to the effect of temperature on algal growth. Limnol. Oceanogr. 19: 756–766.

    Article  Google Scholar 

  • Harris, G. P., 1978. Photosynthesis and growth: The physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. 10: 1–171.

    Google Scholar 

  • Hobson, L. A., 1974. Effects of interactions of irradiance, daylength and temperature on division rates of three species of marine unicellular algae. J. Fish. Res. Bd. Can. 31: 391–395.

    Article  Google Scholar 

  • Jackson, T. A. & Heckey, R. E., 1980. Depression of primary productivity by humic matter in lake and reservoir waters of ihe boreal forest zone. Can. J. Fish, aquat. Sci. 37: 2300–2317.

    Article  Google Scholar 

  • Kalff, J. & Knoechel, R., 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Annu. Rev. Ecol. Syst. 9: 475–495.

    Article  Google Scholar 

  • May, R. M., 1976. Models for single populations. In: May, R. M. (ed.). Theoretical Ecology. Blackwell Sci. Publ.: 4–25.

    Google Scholar 

  • Mullins, M. M., Sloan, P. R. & Eppley, R. W., 1965. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11: 307–311.

    Article  Google Scholar 

  • Nalewajko, C., 1966. Dry weight, ash and volume data for some freshwater planktonic algae. J. Fish. Res. Bd Can. 23: 1285–1288.

    Google Scholar 

  • Nauwerck, A., 1963. Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symb. Bot. Ups. 17: 163 pp.

    Google Scholar 

  • Patten, B. C., 1971. Systems analysis and simulation in ecology. Acad. Press, London.

    Google Scholar 

  • Peterson, B. J., 1978. Radiocarbon uptake: its relation to net particulate carbon production. Limnol. Oceanogr. 23: 179–184.

    Google Scholar 

  • Ramberg, L., 1979. Relations between phytoplankton and light climate in two Swedish forest lakes. Int. Revue, ges. Hydrobiol. 64: 749–782.

    Google Scholar 

  • Ramberg, L., 1980. A population dynamics model of Oocystis parva (Chlorophyceae). Arch. Hydrobiol. 89: 119–134.

    Google Scholar 

  • Rodhe, W., Vollenweider, R. A. & Nauwerck, A., 1958. The primary productivity and standing crop of phytoplankton. In: Buzzati-Traverso, A. A. (Ed.) Perspectives in marine biology. A symposium held at Scripps Inst. Oceanogr. Univ. Calif., March 24-April 2, 1956: 299–322.

    Google Scholar 

  • Sakamoto, M., 1971. Chemical factors involved in the control of phytoplankton production in the Experimental Lakes Area, Northwestern Ontario. J. Fish. Res. Bd Can. 28: 203–213.

    Google Scholar 

  • Smith, R. A., 1980. The theoretical basis for estimating phytoplankton production and specific growth rate from chlorophyll, light and temperature data. Ecol. Modelling 10: 243–264.

    Article  Google Scholar 

  • Smith, V. H., 1979. Nutrient dependence of primary productivity in lakes. Limnol. Oceanogr. 24: 1051–1064.

    Article  Google Scholar 

  • Steeman-Nielssen, E., 1974. Growth of unicellular alga Selenas- trum capricornutum as a function of P. with some information also on N. Verh. int. Ver. Limnol. 20: 38–42.

    Google Scholar 

  • Strathmann, R. R., 1969. Estimating the organic carbon content of phytoplankton from cell volume and plasma volume. Limnol. Oceanogr. 12: 411–418.

    Article  Google Scholar 

  • Ulén, B., 1977. Seston and sediment in L. Norrviken. I Seston composition and sedimentation. Scripta Limnol. Ups. 446.

    Google Scholar 

  • Utermöhl, H., 1958. Vervollkommung der quantitativen Phytoplanktonmetodik. IAL Mitt. 9.

    Google Scholar 

  • Vollenweider, R. A., 1976. Advances in difining critical loading levels for phosphorus in lake eutrophication. Mem. 1st. ital. Idrobiol. 33: 53–83.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Curt Forsberg Jan-Åke Johansson

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Dr. W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Heyman, U. (1983). Relations between Production and Biomass of phytoplankton in four Swedish lakes of different trophic status and humic content. In: Forsberg, C., Johansson, JÅ. (eds) Forest Water Ecosystems. Developments in Hydrobiology, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7284-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7284-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7286-5

  • Online ISBN: 978-94-009-7284-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics