Skip to main content

Phosphorus and phosphatase dynamics in Parakrama Samudra based on diurnal observations

  • Chapter
Limnology of Parakrama Samudra — Sri Lanka

Part of the book series: Developments in Hydrobiology ((DIHY,volume 12))

Abstract

Phosphate-deficiency indicators such as inducement of alkaline phosphatase activity, changes in the algal internal P pool (as hot-water-extractable phosphate) along with soluble reactive phosphate (S RP), soluble phosphate and particulate phosphate have been measured at a Parakrama Samudra North station on three days. Parallel observations were made on total and dissolved nitrogen fractions. The observations made indicate the existence of a diel SRP cycle. The average SRP concentrations ranged from 9 to 12 µg I1- Due to enhanced phosphatase activity during the afternoon, the values can go up to 19-26 µg 1-1However, 80% of the SRP values observed were below 10 µg 1-1and 94% below 20 µg 1-1. The level of the dissolved organic phosphate significantly decreased with the increase of phosphatase activity (r= 0.522, P<0.01). There appears to be an inverse relationship between external inorganic P concentration and both P-deficiency indicators (phosphatase activity and hot-water-extractable P). Hot-water-extractable P per unit chlorophyll- a decreased during the day but increased gradually to reach a maximum at midnight. The above observations suggest that the algal population in Parakrama Samudra may be phosphorus limited at times of the day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren, G., 1977. Growth ofOscillatoria agardhiiin chemostat culture. 1. nitrogen and phosphorus requirements. Oikos29: 209–224.

    Article  CAS  Google Scholar 

  • Bauer, K., 1983. Thermal stratification, mixis and advective currents in Parakrama Samudra Reservoir, Sri Lanka. In: Schiemer, F. (ed.) Limnology of Parakrama Samudra - Sri Lanka: a case study of an ancient man-made lake in the tropics. Developments in Hydrology (this volume). Dr W. Junk, The Hague.

    Google Scholar 

  • Berman, T., 1969. Phosphatase of inorganic phosphorus in Lake Kinneret. Nature 224: 1231–1232.

    Article  PubMed  CAS  Google Scholar 

  • Berman, T ., 1970. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnol. Oceanogr. 15: 663–674.

    Article  CAS  Google Scholar 

  • Chu, S. P., 1942. The influence of the mineral composition of the medium on the growth of planktonic algae. I. Methods and culture media. J. Ecol. 30: 284–325.

    Article  CAS  Google Scholar 

  • Delhomme, J. P., 1978. Kriging in hydro sciences. Advances in Water Resources 1: 251–266.

    Article  Google Scholar 

  • Dillon, P. J. & Rigler, F. H., 1974. The phosphorus chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    Article  CAS  Google Scholar 

  • Dokulil, M., Bauer, K. & Silva, I., 1983. An assessment of phytoplankton biomass and the primary productivity of Pa-rakrama Samudra, a shallow man-made lake in Sri Lanka. In: Schiemer, F. (ed.) Limnology of Parakrama Samudra - Sri Lanka: a case study of an ancient man-made lake in the tropics. Developments in Hydrobiology (this volume). Dr W. Junk, The Hague.

    Google Scholar 

  • Elgavish, A. & Elgavish, A., 1980. 31P NMR differentiation between intracellular phosphate pools inCosmarium(Chlorophyta). J. Phycol. 16: 368–374.

    Article  CAS  Google Scholar 

  • Fitzgerald, G. P. & Nelson, T. C., 1966. Extractive and enzymatic analysis for limiting or surplus phosphorous in algae. J. Phycol. 2: 32–37.

    Article  Google Scholar 

  • Fitzgerald, G. P., 1972. Bioassay analysis of nutrient availability. In: Allen, H. E. & Kramer, J. R. (eds.) Nutrients in Natural Waters, pp. 147–169. Wiley Interscience, New York.

    Google Scholar 

  • Fogg, G. E., 1973. Phosphorus in primary aquatic plants. Water Research 7: 77–91.

    Article  Google Scholar 

  • Fricker, Hj., 1980. OECD eutrophication program - regional project. Alpine Lakes. (Final report.) Swiss. Federal Board for Environmental Protection, Bern, Switzerland. 234 pp.

    Google Scholar 

  • Fuhs, G. W., 1969. Phosphorus content and rate of growthinthe diatoms Cyclotella nana andThalassiosira fluviatilis. J. Phycol. 5: 312–321.

    Article  CAS  Google Scholar 

  • Fuhs, G. W., 1972. Microbial influences on phosphorus cycling. In: Ballantine, R. K. (ed.) The aquatic environment: the microbial transformations and water management implications, pp. 149–169. EPA 430/G-73-008.

    Google Scholar 

  • Galloway, R. A. & Krauss, R. W., 1963. Utilization of phosphorus sources byChlorella. In: Microalgae and photosynthetic bacteria. Plant Cell Physiol. Spec. Suppl., pp. 569–575.

    Google Scholar 

  • Golterman, H. L., 1973. Natural phosphate sources in relation to phosphate budgets: a contribution to the understanding of eutrophication. Water Research 7: 3–17.

    Article  Google Scholar 

  • Golterman, H. L ., 1975. Physiological Limnology. Elsevier, Amsterdam. 489 pp.

    Google Scholar 

  • Gunatilaka, A ., 1980. The chemistry of Parakrama Samudra. In: Schiemer, F. (ed.) Parakrama Samudra (Sri Lanka), Limnology Project, Interim Report, pp. 35–53. IIZ, Vienna.

    Google Scholar 

  • Gunatilaka, A. & Senaratna, C., 1981. Parakrama Samudra (Sri Lanka) Project, a study of a tropical lake ecosystem. II: Chemical environment with special reference to nutrients. Verh. Internat. Verein. Limnol. 21: 1000–1006.

    Google Scholar 

  • Harvey, H. W., 1953. Note on the absorption of organic phosphorus compounds byNitzchia closteriumin the dark. J. Mar. Biol. Assoc. U.K. 31: 475–476.

    Article  Google Scholar 

  • Healey, F. P. & Hendzel, L. L., 1975. Effect of phosphorus deficiency on two algae growing in chemostats. J. Phycol. 11: 303–309.

    CAS  Google Scholar 

  • Healey, F. P. & Hendzel, L. L., 1976. Physiological changes during the course of blooms ofAphanizomenon flos-aqaue. J. Fish. Res. Board. Can. 36: 36–41.

    Article  Google Scholar 

  • Healy, F. P. & Hendzel, L. L., 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can. J. Fish. Aquat. Sci. 37: 442–453.

    Article  Google Scholar 

  • Hutchinson, G. E ., 1967. A treatise on Limnology, vol. 2. Wiley, New York, 1015 pp.

    Google Scholar 

  • Jones, J. G., 1972. Studies of freshwater bacteria: association with algae and alkaline phosphatase activity. J. Ecol. 60: 59–75.

    Article  CAS  Google Scholar 

  • Jones, J. G., 1973. Studies on freshwater micro-organisms: phosphatase activity in lakes of differing degree of eutrophication. J. Ecol. 60: 777–791.

    Google Scholar 

  • Ketchum, B. H. & Corwin, N., 1965. The cycle of phosphorus in a plankton boom in the Gulf of Maine. Limnol. Oceanogr. (Suppl. R) 10: 148–161.

    Google Scholar 

  • Kuenzler, E. J., 1965. Glucose-6-phosphate utilization by marine algae. J. Phycol. 1: 156–164.

    Article  Google Scholar 

  • Kuenzler, E. J., 1970. Dissolved phosphorus excretion by marine phytoplankton. J. Phycol. 6: 7–13.

    CAS  Google Scholar 

  • Kuenzler, E.J. & Parras, J. P., 1965. Phosphorus of marine algae. Biol. Bull. 128: 271–284.

    Article  Google Scholar 

  • Kuhl, A., 1962. Inorganic phosphorus uptake and metabolism. In: Lewin, R. A. (ed.) Physiology and Biochemistry of Algae, pp. 211–229. Academic Press, New York.

    Google Scholar 

  • Kuhl, A., 1974. Phosphorus. In: Stewart, W. D. P. (ed.) Algal physiology and biochemistry, pp. 636–654. Blackwell Scientific, Oxford.

    Google Scholar 

  • Lean, D. R. S., 1973a. Phosphorus dynamics in lake water. Science 179: 678–680.

    Article  PubMed  CAS  Google Scholar 

  • Lean, D. R. S., 1973b. Phosphorus movement between its bio-logically important forms in lake water. J. Fish. Res. Board Can.30:1525–1536.

    Article  CAS  Google Scholar 

  • Lean, D. R. S. & Nalewajko, C., 1976. Phosphate exchange and organic phosphorus excretion by freshwater algae. J. Fish. Res. Board Can. 33: 1312–1323.

    Article  CAS  Google Scholar 

  • Lean, D. R. S. & Nalewajko, C., 1979. Phosphorus turnover time and phosphorus demand in large and small lakes. Arch. Hydrobiol. Beih. Ergbn. Limnol. 13: 120–132.

    CAS  Google Scholar 

  • Mackereth, F. Y. H ., 1953. Phosphorus utilization byAsterionella formosaHaas. J. Exp. Bot. 4: 296–313.

    Article  CAS  Google Scholar 

  • Murphy, J. & Riley, J. P., 1962. A single-solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Oglesby, R. T. & Schaffner, W. R„ 1975. The response of lakes to phosphorus. In: Porter, K. S. (ed.) Nitrogen and Phosphorus Food Production, Waste and the Environment, pp. 23–57. Ann Arbor Sci., Ann Arbor.

    Google Scholar 

  • Overbeck, J ., 1962. Untersuchungenzum Phosphathaushalt von Griinalgen: II. Die Verwertung von Pyrophosphat und or- ganisch gebundenen Phosphaten und ihre Beziehung zu den Phosphatasen vonScenedesmus quadricauda(Turp.) Brép. Arch. Hydrobiol. 58: 281–308.

    CAS  Google Scholar 

  • Peters, R. H., 1976. Orthophosphate turnover in East African lakes. Oecologia (Ber.) 25: 313–319.

    Article  Google Scholar 

  • Rautanen, N. & Karkkainen, V., 1951. On the Phosphatase activity of low-phosphorusTorulopsis utilis. Acta Chem. Scand.8:106–111.

    Article  Google Scholar 

  • Raveh, A. & Aunimelech, Y., 1979. The total nitrogen analysis in water, soil and plant material with pursulphate oxidation. Water Research 13: 911–912.

    Article  CAS  Google Scholar 

  • Redfield, A. C., Ketchum, B. H. & Richards, F. A., 1963. The influence of organisms on the composition of sea-water. In: Hill, M. N. (ed.) The Sea, pp. 26–77. Wiley Interscience, New York.

    Google Scholar 

  • Reichardt, W., 1971. Catalytic metabolism of phosphate in lake water and by Cyanophyta. Hydrobiologia 38: 377–394.

    Article  CAS  Google Scholar 

  • Reichardt, W., Overbeck, J. & Stenbing, L., 1967. Free dissolved enzymes in lake water. Nature 216: 1345–1347.

    Article  CAS  Google Scholar 

  • Rhee, G. Y., 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate inScenedesmus sp. J. Phycol. 9: 495–506.

    CAS  Google Scholar 

  • Rigler, F. H., 1964. The phosphorus fractions and turnover time of phosphorus in different types of lakes. Limnol. Oceanogr. 9: 511–518.

    Article  CAS  Google Scholar 

  • Rigler, F. H., 1966. Radiobiological analysis of inorganic phosphorus in lake water. Verh. Internat. Verein. Limnol. 16: 465–470.

    Google Scholar 

  • Rigler, F. H., 1968. Further observations inconsistent with the hypothesis that the molybdenum blue method measures in-organic phosphorus in lake water. Limnol. Oceanogr. 13: 7–13.

    Article  Google Scholar 

  • Rigler, F. H., 1973. A dynamic view of phosphorus in lakes. In: Griffith, E. et al. (eds.) Environmental Phosphorus Handbook, pp. 539–572. John Wiley & Sons, Toronto.

    Google Scholar 

  • Rother, J. A. & Fay, P., 1979. Some physiological-biochemical characteristics of planktonic blue-green algae during bloom formation in three Salopian meres. Freshwater Biol. 9: 369–379.

    Article  CAS  Google Scholar 

  • Sakamoto, M ., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–25.

    Google Scholar 

  • Schiemer, F., 1983. The Parakrama Samudra Project - scope and objectives. In: Schiemer, F. (ed.) Limnology of Parak¬rama Samudra - Sri Lanka: a case study of an ancient man-made lake in the tropics. Developments in Hydrobiology (this volume). Dr W. Junk, The Hague.

    Google Scholar 

  • Schindler, D. W., 1976. Biogeochemical evolution of phosphorus limitation in nutrient-enriched lakes of the precambrian shield. In: Nriagu, J. O. (ed.) Environmental Biogeochemistry, pp. 647–664. Ann Arbor Sci., Ann Arbor.

    Google Scholar 

  • Smith, R E. H. & Kalff, J., 1981. The effect of phosphorus limitation on algal growth rates: evidence from alkaline phosphatase. Can. J. Fish. Aquat. Sci. 38: 1421–1427.

    Article  CAS  Google Scholar 

  • Sproule, J. L. & Kalff, J., 1978. Seasonal cycles in the phyto¬plankton phosphorus status of a north temperate zone lake (Lake Memphremagog, Que.-Vt.), plus a comparison of techniques. Verh. Int. Ver. Limnol. 20: 2681–2688.

    Google Scholar 

  • Strickland, J. D. H. & Parsons, T. R., 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Board Can. 167.

    Google Scholar 

  • Thomas, E. A., 1969. The process of eutrophication in central European lakes. In: Eutrophication: causes, concequences, correctives, pp. 29–49. Nat. Acad. Sci./ Nat. Res. Council Publ. 1700.

    Google Scholar 

  • Torrani, A ., 1960. Influence of inorganic phosphate in the formation of phosphatases byE. coli. Biochim. Biophys. Acta 38: 460–469.

    Article  Google Scholar 

  • Uehlinger, U ., 1980. Untersuchungen zur Autoekologie der planktischen BlaualgaAphanizomenon flos-aquae. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Viner, A. B ., 1973. Responses of a mixed phytoplankton population to nutrient enrichments of ammonia and phosphate, and some associated implications. Proc. R. Soc. Lond. B 183: 351–370.

    Article  CAS  Google Scholar 

  • Vollenweider, R. A., 1968. Scientific fundamentals of the eutro-phication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD, DAS/CSI/68.27, Paris.

    Google Scholar 

  • Wetzel, R. G., 1975. Limnology. Saunders, Philadelphia. 743 pp.

    Google Scholar 

  • Wetzel, R. G., 1981. Long-term dissolved and particulate alkaline phosphatase activity in a hardwater lake in relation to lake stability and phosphorus enrichments. Verh. Internat. Verein. Limnol. 21: 363–395.

    Google Scholar 

  • Wynne, D., 1977. Alterations in activity of phosphatases during thePeridiniumbloom in Lake Kinneret. Physiol. Plant. 40: 219–224.

    Article  CAS  Google Scholar 

  • Wynne, D. & Berman, T., 1980. Hot water extractable phosphorus: an indicator of nutritional status of Peridinium cinctum (Dinopyceae) from Lake Kinneret? J. Phycol. 16: 40–46.

    Article  Google Scholar 

  • Wynne, D ., 1981a. Phosphorus, phosphatases and thePerideniumbloom in Lake Kinneret. Verh. Internat. Verein. Limnol. 21: 523–527.

    CAS  Google Scholar 

  • Wynne, D., 1981b. The role of phosphatases in the metabolism ofPeridenium cinctum, from Lake Kinneret. Hydrobiologia 83: 93–99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Schiemer

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Dr. W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Gunatilaka, A. (1983). Phosphorus and phosphatase dynamics in Parakrama Samudra based on diurnal observations. In: Schiemer, F. (eds) Limnology of Parakrama Samudra — Sri Lanka. Developments in Hydrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7281-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7281-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7283-4

  • Online ISBN: 978-94-009-7281-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics