Skip to main content

Consequences of Substituting 2NH2A for a in Synthetic DNA’S

  • Conference paper
Nucleic Acids: The Vectors of Life

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 16))

Abstract

Chemical and spectroscopic consequences of replacing A with 2NH2A have been examined in a variety of synthetic DNA’s. This substitution, which permits formation of a third hydrogen bond in AT pairs, increases the stability of these pairs. The Tm elevation, however, is much smaller in the deoxy (∆Tm 12–15°) than in the ribo series (∆Tm 27–33°). Sequence effects appear to be small. CD spectra of all helices having the 2NH2A substitution have a relatively strong extremum at 286 to 298 nm. This band is positive for B-form helices (deoxy-deoxy pairs in low salt) and negative for A-form helices (ribo-ribo and deoxy-ribo pairs). These results are consistent with the unusual CD spectrum of S-2L DNA (Kirnos et al.). This natural DNA has all A’s replaced by 2NH2A and positive CD bands at 290 nm and 265 nm. We assign the band at ~290 nm in these helices to the B2u transition of 2NH2A, displaced to longer wavelength by exciton splitting, and suggest that it is relatively unperturbed by transitions of other bases. Alternating (d2NH2A-dT)n undergoes a cooperative transition to an altered conformation in the presence of 4M NaC1 or 2 x 10−4M hexammine cobalt. CD, IR, and 31P NMR experiments reveal similarities to the behavior of (dG-dC)n as well as some differences. The results are consistent with a Z conformation for the high salt form but do not establish it. The alternating polymers (d2NH2A-dC)n•(dG-dT)n and (d2NH2A-dC)n•(dI-dT)n were also observed with CD. The former did not undergo a discrete transition in high salt. The latter did undergo a transition, but the structural nature of the change is not clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howard, F.B. & Miles, H.T.: 1966, J. Biol. Chem. 241, pp. 4293–4295.

    CAS  Google Scholar 

  2. Howard, F.B., Frazier, J. & Miles, H.T.: 1976, Biochemistry 17, pp. 3783–3795.

    Article  Google Scholar 

  3. Muraoka, M., Miles, H.T. & Howard, F.B.: 1980, Biochemistry 19, pp. 2429–2439.

    Article  CAS  Google Scholar 

  4. Kirnos, M.D., Khudyakov, I.Y., Alexandrushkina, N.I. & Vanyushin, B.F.: 1977, Nature 270, pp. 369–370.

    Article  CAS  Google Scholar 

  5. Khudyakov, I.Y., Kirnos, M.D., Alexandrushkina, N.I. B.F.: 1978, Virology 88, pp. 8–18.

    Article  CAS  Google Scholar 

  6. Howard, F.B. & Miles, H.T.: 1983, Biopolymers 22, pp. 597–600.

    Article  CAS  Google Scholar 

  7. Tinoco, I.: 1964, J. Am. Chem. Soc. 86, pp. 297–298.

    Article  CAS  Google Scholar 

  8. Mathelier, H.D., Howard, F.B. & Miles, H.T.: 1979, Biopolymers 18, pp. 709–722.

    Article  CAS  Google Scholar 

  9. Milman, G., Langridge, R. & Chamberlin, M.J.: 1967, Proc. Natl. Acad. Sci. USA 57, pp. 1804–1810.

    Article  CAS  Google Scholar 

  10. O’Brien, E.J. & MacEwan, A.W.: 1970, J. Mol. Biol. 48, pp. 243–261.

    Article  Google Scholar 

  11. Arnott, S.: 1970, Prog. Biophys. Mol. Biol. 21, pp. 267–319.

    Google Scholar 

  12. Ikeda, K., Frazier, J. & Miles, H.T.: 1970, J. Mol. Biol. 54, pp. 59–84.

    Article  CAS  Google Scholar 

  13. Wells, R.D., Ohtsuka, E., & Khorana, H.G: 1965, J. Mol. Biol. 14, pp. 221–237.

    Article  CAS  Google Scholar 

  14. Gray, D.M. & Ratliff, R.L.: 1975, Biopolymers 14, pp. 487–498.

    Article  CAS  Google Scholar 

  15. Mitsui, Y., Langridge, R., Grant, R.C., Kodama, M., Wells, R.D., Shortle, B.E. & Cantor, C.K.: 1970, Nature 228, pp. 1166–1169.

    Article  CAS  Google Scholar 

  16. Howard, F.B. & Miles, H.T.: 1982, Biopolymers 21, pp. 147–157.

    Article  CAS  Google Scholar 

  17. Wang, A.H., Quigley,: J.J., Kolpak, F.J., Crawford, J.L., van Boom, J.H., van der Marel, G. & Rich, A.: 1979, Nature 282, pp. 680–686.

    Article  CAS  Google Scholar 

  18. Drew, H., Takano, T., Tanaka, S., Itakura, K. & Dickerson, R.E.: 1980, Nature 286, pp. 567–573.

    Article  CAS  Google Scholar 

  19. Pohl, F.M. & Jovin, T.M.: 1972, J. Mol. Biol. 67, pp. 375–396.

    Article  CAS  Google Scholar 

  20. Behe, M. & Felsenfeld, G.: 1981, Proc. Nat. Acad. Sci. USA 78, pp. 1619–1623.

    Article  CAS  Google Scholar 

  21. Miles, H.T.: 1971, Procedures Nuc. Acid Res. 2, pp. 205–232.

    CAS  Google Scholar 

  22. Cohen, J.S., Chen, C-W., & Knop, R.H.: 1983, These Proceedings.

    Google Scholar 

  23. Shindo, H., Simpson, R.T. & Cohen, J.S.: 1979, J. Biol. Chem. 254, pp. 8125–8128.

    CAS  Google Scholar 

  24. Patel, D.J., Canuel, L.L. & Pohl, F.M.: 1979, Proc. Natl. Acad. Sci. USA 76, pp. 2408–2511.

    Google Scholar 

  25. Klug, A., Jack, A., Viswamitra, M.A., Kennard, O., Shakked, Z. & Steitz, T.A.: 1979, J. Mol. Biol. 131, pp. 669–680.

    Article  CAS  Google Scholar 

  26. Chen, C-W., Cohen, J.S. & Behe, M.: 1983, Biochemistry 22, in press.

    Google Scholar 

  27. Zimmerman, S.B. & Pheiffer, B.H.: 1980, J. Mol. Biol. 142, pp. 315–330.

    Article  CAS  Google Scholar 

  28. Rhodes, N.J., Mahendrasingam, A., Pigram, W.J., Fuller, W., Brahms, J., Vergne, J. & Warren, R.A.J.: 1982, Nature 296, pp. 267–269.

    Article  CAS  Google Scholar 

  29. Szybalski, E.H. & Szybalski, W.: 1975 Handbook of Biochemistry and Molecular Biology (3rd ed.) Vol. I, pp. 575–588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D. Reidel Publishing Company

About this paper

Cite this paper

Howard, F.B., Miles, H.T. (1983). Consequences of Substituting 2NH2A for a in Synthetic DNA’S. In: Pullman, B., Jortner, J. (eds) Nucleic Acids: The Vectors of Life. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7225-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7225-4_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7227-8

  • Online ISBN: 978-94-009-7225-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics