Skip to main content

Nucleic Acid Junctions: The Tensors of Life?

  • Conference paper
Nucleic Acids: The Vectors of Life

Abstract

Nucleic acids which interact to generate structures in which three or more double helices emanate from a single point are said to form a junction. Such structures arise naturally as intermediates in DNA replication and recombination. It has been proposed that stable junctions can be created by synthesizing sets of oligonucleotides of defined sequence that can associate by maximizing Watson-Crick complementarity (Seeman, 1981, 1982). In order to make it possible to design molecules that will form junctions of specific architecture, we present here an efficient algorithm for generating nucleic acid sequences that optimize two fundamental properties: fidelity and stability. Fidelity refers to the relative probability of the junction complex relative to all alternative paired structures. Calculations are described which permit approximate prediction of the melting curves for junction complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borer, P.N., Dengler, B., Tinoco, I., and Uhlenbeck, O.C.: 1974, “Stability of Ribonucleic Acid Double Helices” J. Mol. Biol. 86, pp. 843–853.

    Article  CAS  Google Scholar 

  • Broker, T.R., and Lehman, I.R.: 1971, “Branched DNA Molecules: Intermediates in T4 Recombination” J. Mol. Biol. 60, pp. 131–149.

    Article  CAS  Google Scholar 

  • Hauptman, H., and Karle, J.: 1956, “Structure Invariants and Seminvariants for Non-Centrosymmetric Space Groups” Acta Cryst. 9, pp. 45–55.

    Article  CAS  Google Scholar 

  • Holliday, R.: 1964, “A Mechanism for Gene Conversion in Fungi” Genet. Res. 5, pp. 282–304.

    Article  Google Scholar 

  • Jacobson, H., and Stockmayer, W.: 1950, “Intramolecular Reaction in Polycondensations. I: The Theory of Linear Systems” J. Chem. Phys. 18, pp. 1600–1606.

    Article  CAS  Google Scholar 

  • Kallenbach, N.R., and Berman, H.M.: 1977, “RNA Structure” Quart. Rev. Biophysics 10, pp. 138–236.

    Article  CAS  Google Scholar 

  • Kim, J., Sharp, P.A., and Davidson, N.: 1972, “Electron Microscopic Studies of Heteroduplex DNA from a Deletion Mutant of Bacteriophage X 174” Proc. Nat. Acad. Sci. (USA) 69, pp. 1948–1952.

    Article  CAS  Google Scholar 

  • Marky, L.A., and Breslauer, K.J.: 1980, “Calorimetric and Spectroscopic Investigation of the Helix-To-Coil Transition of the Self-Complementary d(G-G-A-A-T-T-C-C) duplex” Fed. Proc. 39, p. 1880.

    Google Scholar 

  • Nash, H.: 1981, “Integration and Excision of Bacteriophage A” Ann. Rev. Genet. 15, pp. 143–167.

    Article  CAS  Google Scholar 

  • Nilsen, T., and Baglioni, C.: 1979, “Unusual Base Pairing of Newly Synthesized DNA in HeLa Cells” J. Mol. Biol. 133, pp. 319–338.

    Article  CAS  Google Scholar 

  • Seeman, N.C.: 1980, “Crystallographic Investigation of Oligonucleotide Structure” IN Nucleic Acid Geometry and Dynamics, R.H. Sarma, editor, Pergamon Press, New York, pp. 109–148.

    Google Scholar 

  • Seeman, N.C.: 1981, “Nucleic Acid Junctions: Building Blocks for Genetic Engineering in Three Dimensions” IN Biomolecular Stereodynamics, Vol. 1, R.H. Sarma, editor, Adenine Press, New York, pp. 269–278.

    Google Scholar 

  • Seeman, N.C.: 1982, “ Nucleic Acid Junctions and Lattices” J. Theor. Biol. 99, pp. 237–247.

    Article  CAS  Google Scholar 

  • Seeman, N.C., and Robinson, B.H.: 1981, “Simulation of Double Stranded Branch Point Migration” IN Biomolecular Stereodynamics, Vol. 1, R.H. Sarma, editor, Adenine Press, New York, pp. 279–300.

    Google Scholar 

  • Thompson, B.J., Camien, M.N., and Warner, R.C.: 1976, “Kinetics of Branch Migration in Double Stranded DNA” Proc. Nat. Acad. Sci. (USA) 73, pp. 2299–2303.

    Article  CAS  Google Scholar 

  • Warner, R.C., Fishel, R., and Wheeler, F.: 1978, “Branch Migration in Recombination” Cold Spring Harbor Symp. Quant. Biol. 43, pp. 957–968.

    Google Scholar 

  • Zimm, B.: 1960, “Theory of Melting of the Helical Form in Double Chains of the DNA Type” J. Chem. Phys. 33, pp. 1349–1356.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D. Reidel Publishing Company

About this paper

Cite this paper

Seeman, N.C., Kallenbach, N.R. (1983). Nucleic Acid Junctions: The Tensors of Life?. In: Pullman, B., Jortner, J. (eds) Nucleic Acids: The Vectors of Life. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7225-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7225-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7227-8

  • Online ISBN: 978-94-009-7225-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics