Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 113))

Abstract

The general direct CI method for a configuration expansion consisting of all single and double replacements from a leading set of reference states is described. The strategy involves the initial construction of a formula tape for the internal space with a subsequent direct CI treatment of the external space, where the internal formulas are processed parallel to the molecular integrals. The recent development of this method is reviewed including a matrix formulation, particularly efficient for array- processing, and the internal spin driven scheme. Within the same general direct CI framework some approximate methods are also described. These methods include the internally and externally contracted CI methods. The externally contracted CI method is shown to correspond to the work of one half of an ordinary CI iteration in the large basis set limit where the overhead is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.O. Roos, Chem. Phys. Lett. 15, 153 (1972)

    Article  ADS  Google Scholar 

  2. P.E.M. Siegbahn in: Proceedings of SRC Atlas Symposium No 4, ‘Quantum Chemistry - the State of the Art’, V.R. Saunders and J. Brown, eds., Atlas Computer Laboratory, Chilton Didcot, Oxfordshire (1975).

    Google Scholar 

  3. B.O. Roos and P.E.M. Siegbahn in ‘Modern Theoretical Chemistry’, Vol. 3, H.F. Schaefer, ed., Plenum Press, New York, N.Y., (1977), Chap. 7.

    Google Scholar 

  4. B.O. Roos and P.E.M. Siegbahn, Int. J. Quantum Chem. 16, 485 (1980).

    Article  Google Scholar 

  5. R.R. Lucchese and H.F. Schaefer, J. Chem. Phys. 68, 769 (1978).

    Article  ADS  Google Scholar 

  6. N.C. Handy, J.D. Goddard and H. F. Schaefer, J. Chem. Phys. 71, 426 (1979).

    Article  ADS  Google Scholar 

  7. P.E.M. Siegbahn, J. Chem. Phys. 72, 1467 (1980).

    Article  MathSciNet  Google Scholar 

  8. J. Paldus, in: Theoretical Chemistry: Advances and Perspectives, eds. H. Eyring and D.J. Henderson, Vol. 2 ( Academic Press, New York, 1976 ) p. 131.

    Google Scholar 

  9. I. Shavitt, Int. J. Quantum Chem. Symp. 12, 5 (1978); and in Lecture Notes in Chemistry: The Unitary Group, ed. J. Hinze (Springer, Berlin, 1981 ) p. 51.

    Google Scholar 

  10. I. Shavitt, Int. J. Quantum Chem. Symp. 12, 5 (1978); and in Lecture Notes in Chemistry: The Unitary Group, ed. J. Hinze (Springer, Berlin, 1981 ) p. 51.

    Google Scholar 

  11. B. Liu and M. Yoshimine, J. Chem. Phys. 74, 612 (1981).

    Article  ADS  Google Scholar 

  12. V.R. Saunders and J.H. van Lenthe, to be published.

    Google Scholar 

  13. W. Meyer, J. Chem. Phys. 64, 2901 (1976).

    Article  ADS  Google Scholar 

  14. R. Ahlrichs and F. Driessler, Theoret. Chim. Acta 36, 275 (1975).

    Article  Google Scholar 

  15. A.D. McLean and B. Liu, J. Chem. Phys. 58, 1066 (1973).

    Article  ADS  Google Scholar 

  16. H. Lischka, R. Shepard, F.B. Brown and I. Shavitt, Int. J. Quantum Chem. Symp. 15, 91 (1981).

    Google Scholar 

  17. W. Dach and J. Karwowski, Int. J. Quantum Chem. (in press).

    Google Scholar 

  18. R. Ahlrichs, in ‘Proceedings of the 5th Seminar on Computational Methods in Quantum Chemistry, Groningen, September 1981’, P.T. van Duijnen and W. C. Nieuwpoort, eds., (Max Planck Institut, Garching, München).

    Google Scholar 

  19. P. J.A. Ruttink and M.M.M. van Schaik, same as Ref. 17.

    Google Scholar 

  20. W. Meyer, same as Ref. 3, Chap. 11.

    Google Scholar 

  21. P.E.M. Siegbahn, Int. J. Quantum Chem. 18, 1229 (1980).

    Article  Google Scholar 

  22. H.J. Werner and E.A. Reinsch, same as Ref. 17.

    Google Scholar 

  23. P.E.M. Siegbahn, same as Ref. 17.

    Google Scholar 

  24. R.J. Buenker and S.D. Peyerimhoff, Theor. Chim. Acta 35, 33 (1974).

    Article  Google Scholar 

  25. J. Paldus and M.J. Boyle, Physica Scripta 21, 295 (1980).

    Article  ADS  Google Scholar 

  26. V.R. Saunders andM.F. Guest, Comput. Phys. Comm., to be published.

    Google Scholar 

  27. V.R. Saunders, private communication.

    Google Scholar 

  28. I. Shavitt, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Siegbahn, P.E.M. (1983). The Direct CI Method. In: Diercksen, G.H.F., Wilson, S. (eds) Methods in Computational Molecular Physics. NATO ASI Series, vol 113. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7200-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7200-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7202-5

  • Online ISBN: 978-94-009-7200-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics