Skip to main content

Relaxation Processes in Nuclear Magnetic Resonance

  • Chapter
The Multinuclear Approach to NMR Spectroscopy

Part of the book series: NATO ASI Series ((ASIC,volume 103))

Abstract

This chapter is devoted to a general discussion about relaxation in nuclear magnetic resonance with a special emphasis on the physical signification of concepts, equations, and terms usually used in this field. Systems which are moved away from equilibrium after a change in one of the variables of state will reach the equilibrium by relaxation processes. Therefore, relaxation is of great importance in chemistry and physics. It plays a special role in NMR because this spectroscopy is characterized by a very low-frequency domain. In NMR, relaxation is generally described by the Bloch equations, which lead to a clear distinction between transverse and longitudinal relaxation. Though they work well for a semiquantitative description of relaxation processes, the Bloch equations are far from general: nonexponential decays are frequently observed for relaxing spin systems. Theories of relaxation require the definition of correlation G (τ) and spectral density J(ω) functions. They also require the calculation of transition probabilities per second for jumps between the Zeeman levels. The nature of the coupling Hamiltonian determines the relaxation mechanism, while the analytical form of J(ω) determines the frequency dependence of transition probabilities. The efficiency of the various relaxation mechanisms depends on the nature of the observed nuclei and also on the value of the applied field BO. The case of nuclei with I > 1/2 is particularly interesting because the quadrupolar mechanism is the only one which is due to an electrical coupling between the lattice and spin system.

Indeed if it were not for the prevalence of relaxation, physicists might have abandoned the field of magnetic resonance to chemists long ago. C P . Poole and H.O. Farrach (1971)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev., 73, pp. 679–712 (1948).

    Article  Google Scholar 

  2. A. Abragam, “Les Principes du Magnétisme Nucleaire,” Institut National des Sciences et Techniques Nucleaires et Presses Universitaires de France, Paris, 1961.

    Google Scholar 

  3. C. P. Slichter, “Principles of Magnetic Resonance,” Harper, Row and Weatherhill, New York, 1964.

    Google Scholar 

  4. C. P. Poole, Jr., and H. A. Farrach, “Relaxation in Magnetic Resonance,” Acadamic Press, New York, 1971.

    Google Scholar 

  5. R. Lenk, “Brownian Motion and Spin Relaxation,” Elsevier Scientific Publishing Company, Amsterdam, 1977.

    Google Scholar 

  6. T. C. Farrar and E. Becker, “Pulse and Fourier Transform NMR,” Academic Press, New York, 1971.

    Google Scholar 

  7. A. G. Redfield, Advan. Magn. Reson., 1, pp. 1–32 (1965).

    Google Scholar 

  8. J. M. Deutsch and I. Oppenheim, Advan. Magn. Reson., 3, pp. 43–78 (1968).

    Google Scholar 

  9. R. G. Gordon, Advan. Magn. Reson., 3, pp. 1–42 (1968).

    Google Scholar 

  10. J. Jeener, Advan. Magn. Reson., 3, pp. 205–310 (1968).

    Google Scholar 

  11. J. E. Leffler and E. Grunwald, “Rates and Equilbria of Organic Reactions,” J. Wiley, New York, 1963.

    Google Scholar 

  12. H. G. Hecht, “Magnetic Resonance Spectroscopy”, J. Wiley, New York, 1967.

    Google Scholar 

  13. H. G. Hertz, “Translational Motion as Studied by Nuclear Magnetic Resonance,” in “Molecular Motions in Liquids,” J. Lascombe, Eds., D. Reidel Pub. Co., Dordrecht, 1974, pp. 337–357.

    Chapter  Google Scholar 

  14. I. R. Senitzky, Phys. Rev., 134, pp. A816–823 (1964).

    Article  Google Scholar 

  15. I. R. Senitzky, Phys. Rev., 135, pp. A1498–1505 (1964).

    Article  Google Scholar 

  16. J. H. Noggle and R. E. Schirmer, “The Nuclear Overhauser Effect,” Academic Press, New York, 1971.

    Google Scholar 

  17. P. S. Hubbard, Proc. Roy. Soc., London, A291, pp. 537–555 (1966).

    Article  Google Scholar 

  18. F. Bloch, Phys. Rev., 102, pp. 104–135 (1956).

    Article  MATH  Google Scholar 

  19. R. K. Wangsness and F. Bloch, Phys. Rev., 89, pp. 728–739 (1953).

    Article  MATH  Google Scholar 

  20. R. Kubo and K. Tomita, J. Phys. Soc. Japan, 9, pp. 888–919 (1954).

    Article  Google Scholar 

  21. D. Kivelson and K. Ogan, Advan. Magn. Reson., 7, pp. 71–155 (1974).

    Google Scholar 

  22. H. C. Torrey, Phys. Rev., 92, pp. 962–969 (1953).

    Article  MATH  Google Scholar 

  23. H. A. Resing and H. C. Torrey, Phys. Rev., 131, pp. 1102–1104 (1963).

    Article  Google Scholar 

  24. J. R. Lyerla and D. M. Grant, Intern. Rev. Sci., 4, pp. 155–197 (1972).

    Google Scholar 

  25. G. A. Webb, in “NMR and The Periodic Table,” R. K. Harris and B. E. Mann, Eds., Academic Press, London, 1978.

    Google Scholar 

  26. M.L. Stien, M. Claessens, A. Lopez, and J. Reisse, J. Am. Chem. Soc., to be published (1982).

    Google Scholar 

  27. M. Claessens, L. Palombini, M. L. Stien, and J. Reisse, Nouv. J. Chim., to be published (1982).

    Google Scholar 

  28. A. Bohr and B. R. Mottelson, “Nuclear Structure,” Vol. 2. W. A. Benjamin, London, 1975.

    Google Scholar 

  29. R. M. Sternheimer, Phys. Rev., 84, pp. 244–253 (1951); 86, pp. 316-324 (1951); 95, pp. 736-750 (1954).

    Article  MATH  Google Scholar 

  30. F. Lurçat, C. R. Acad. Sci., Paris, 240, pp. 2402–2403 (1955).

    Google Scholar 

  31. A. Briguet, J. C. Duplan, and J. Delmau, J. Magn. Reson., 42, pp. 141–146 (1981).

    Google Scholar 

  32. J. B. Robert and L. Wiesenfeld, Phys. Report, to be published.

    Google Scholar 

  33. D. G. Gillies, L. P. Blaauw, G. H. Hays, R. Huis, and A. D. H. Clague, J. Magn. Reson., 42, pp. 420–428 (1981).

    Google Scholar 

  34. F. Brady, R. W. Matthews, M. J. Forster, and D. G. Gillies, Inorg. Nucl. Chem. Letters, 17, pp. 155–159 (1981).

    Article  Google Scholar 

  35. M. T. Chenon, J. M. Bernassau, C. L. Mayne, and D. M. Grant, J. Chem. Phys., to be published (1982).

    Google Scholar 

  36. T. E. Bull, S. Forsen, and D. L. Turner, J. Chem. Phys., 70, pp. 3106–3111 (1979).

    Article  Google Scholar 

  37. B. Halle and H. Wennerström, J. Magn. Reson., 44, pp. 89–100 (1981).

    Google Scholar 

  38. T. Andersson, T. Drakenberg, S. Forsén, E. Thulin, and M. Swärd, J. Am. Chem. Soc., 104, pp. 576–580 (1982).

    Article  Google Scholar 

  39. P. S. Hubbard, J. Chem. Phys., 53, pp. 985–987 (1970).

    Article  Google Scholar 

  40. L. G. Werbelow and A. G. Marshall, J. Magn. Reson., 43, p. 443–448 (1981).

    Google Scholar 

  41. L. G. Werbelow, A. Thevand, and G. Pouzard, J. Chem. Soc Faraday Trans. II, 75, pp. 971–974 (1979).

    Article  Google Scholar 

  42. L. G. Werbelow, J. Magn. Res., 34, pp. 439–442 (1979).

    Google Scholar 

  43. D. Shaw, “Fourier Transform NMR Spectroscopy,” Elsevier, Amsterdam, 1976.

    Google Scholar 

  44. M. Claessens, D. Zimmermann, and J. Reisse, unpublished results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D. Reidel Publishing Company

About this chapter

Cite this chapter

Reisse, J. (1983). Relaxation Processes in Nuclear Magnetic Resonance. In: Lambert, J.B., Riddell, F.G. (eds) The Multinuclear Approach to NMR Spectroscopy. NATO ASI Series, vol 103. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7130-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7130-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7132-5

  • Online ISBN: 978-94-009-7130-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics