Skip to main content

Cadmium-113 Nuclear Magnetic Resonance Spectroscopy in Bioinorganic Chemistry. A Representative Spin 1/2 Metal Nuclide

  • Chapter
The Multinuclear Approach to NMR Spectroscopy

Part of the book series: NATO ASI Series ((ASIC,volume 103))

Abstract

The main theme of this chapter involves the utilization of 113Cd NMR spectroscopy to probe interesting structural and dynamic problems in inorganic and bioinorganic chemistry. Within the first portion of the chapter we have summarized most of the known 113Cd chemical shifts and coupling constants. Further, we have also presented introductory comments with regard to relaxation mechanisms and the importance of chemical dynamics. Subsequently, we discuss in detail the consequences that chemical dynamics have upon the interpretation of relaxation parameters and chemical shifts. The discussion then shifts to solid state NMR methods. Our recent work on cadmium-substituted porphyrins and 113Cd NMR of single crystals serve as examples. Finally, we bring all of these points into focus when we examine the utilization of cadmium as a surrogate probe for Ca+2 and Zn+2 in bioinorganic systems. Here, we have limited our discussion to our work on Concanavalin A and skeletal Troponin C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. W. Epperlein, H. Krüger, O. Lutz, and A. Schwenk, Z. Naturforsch., 29a, pp. 1553–1557 (1974).

    Google Scholar 

  2. R. A. Haberkorn, L. Que, Jr., W. O. Gullum, R. H. Holm, C. S. Liu, and R. C. Lor, Inorg. Chem., 15, p. 2408 (1976).

    Google Scholar 

  3. A. D. Cardin, P. D. Ellis, J. D. Odom, and J. W. Howard, Jr., J. Am. Chem. Soc., 97, p. 1672 (1975).

    Google Scholar 

  4. M. A. Sens, N. K. Wilson, P. D. Ellis, and J. D. Odom, J. Magn. Reson., 19, pp. 323–336 (1975).

    Google Scholar 

  5. B. W. Epperlein, H. Krüger, O. Lutz, and A. Schwenk, Z. Naturforsch., 29a, pp. 660–661 (1974).

    Google Scholar 

  6. G. E. Maciel and M. Borzo, J. C. S. Chem. Commun., p. 394 (1973).

    Google Scholar 

  7. W. G. Schneider and A. D. Buckingham, Disc. Faraday Soc., 34, p. 147 (1962).

    Google Scholar 

  8. R. E. Dessy, T. J. Flautt, H. H. Jaffe, and G. F. Reynolds, J. Chem. Phys., 30, p. 1422 (1959).

    Google Scholar 

  9. G. E. Maciel and M. Borzo, J. C. S. Chem. Commun., p. 394 (1973).

    Google Scholar 

  10. A. D. Cardin, P. D. Ellis, J. D. Odom, and J. W. Howard, Jr., J. Am. Chem. Soc., 97, pp. 1672–1679 (1975).

    Google Scholar 

  11. R. A. Haberkorn, L. Que, Jr., W. O. Gillum, R. H. Holm, C. S. Liu, and R. C. Lord, Inorg. Chem., 15, pp. 2408–2414 (1976).

    Google Scholar 

  12. R. J. Kostelnik and A. A. Bothner-by, J. Magn. Reson., 14, pp. 141–151 (1974). This reference contains extensive information on the concentration dependence of chemical shifts of 113Cd containing compounds.

    Google Scholar 

  13. M. J. B. Ackerman and J. J. H. Ackerman, J. Phys. Chem., 84, 3151–3153 (1980).

    Google Scholar 

  14. A. D. Cardin, P. D. Ellis, J. D. Odom, and J. W. Howard, Jr., J. Am. Chem. Soc., 97, p. 1672 (1975).

    Google Scholar 

  15. R. J. Kostelnik and A. A. Bothner-by, J. Magn. Reson., 14, pp. 141–151 (1974).

    Google Scholar 

  16. J. J. H. Ackerman, T. V. Orr, V. J. Bartuska, and G. E. Maciel, J. Am. Chem. Soc., 101, p. 341 (1979).

    Google Scholar 

  17. A. D. Cardin, P. D. Ellis, J. D. Odom, and J. W. Howard, Jr., J. Am. Chem. Soc., 97, p. 1672 (1975).

    Google Scholar 

  18. G. E. Maciel and M. Borzo, J. C. S. Chem. Commun., 394 (1973).

    Google Scholar 

  19. J. D. Kennedy and W. McFarlane, J. Chem. Soc. Perkin 2, 1187 (1977).

    Google Scholar 

  20. G. K. Carson, P. A. W. Dean, M. J. Stillman, Inorg. Chim. Acta, 56, pp. 59–71 (1981).

    Google Scholar 

  21. G. K. Carson and P. A. W. Dean, Inorg. Chim. Acta, 66, pp. 37–39 (1982).

    Google Scholar 

  22. R. A. Haberkorn, L. Que, Jr., W. O. Gillum, R. H. Holm, C. S. Liu, and R. C. Lord, Inorg. Chem., 15, p. 2408 (1976).

    Google Scholar 

  23. E. A. H. Griffith and E. L. Amma, J.C.S. Chem. Commun., p. 1013 (1979).

    Google Scholar 

  24. J. H. Jakobsen, P. D. Ellis, R. R. Tuners, and C. F. Jensen, J. Am. Chem. Soc., in press.

    Google Scholar 

  25. A. D. Cardin, P. D. Ellis, J. D. Odom, and J. W. Howard, Jr., J. Am. Chem. Soc., 97, p. 1672 (1975).

    Google Scholar 

  26. C. F. Jensen, S. Deshmukh, J. H. Jakobsen, R. R. Inners, and P. D. Ellis, J. Am. Chem. Soc., 103, p. 3659 (1981).

    Google Scholar 

  27. T. Maitani and K. T. Suzuki, Inorg. Nucl. Chem. Lett., 15, p. 213 (1979).

    Google Scholar 

  28. D. Dakternieks, Austral. J. Chem., 35, pp. 469–481 (1982).

    Google Scholar 

  29. R. Colton and D. Dakternieks, Austral. J. Chem., 33, pp. 1677–1684 (1980).

    Google Scholar 

  30. A. R. Palmer, D. B. Bailey, W. D. Behnke, A. D. Cardin, P. P. Yang, and P. D. Ellis, Biochem., 19, pp. 5063–5070 (1980).

    Google Scholar 

  31. D. B. Bailey, P. D. Ellis, A. D. Cardin, and W. D. Behnke, J. Am. Chem. Soc., 100, p. 5236 (1978).

    Google Scholar 

  32. T. Drakenberg, B. Lindman, A. Cave, and J. Parello, FEBS Lett., 92, p. 346 (1978).

    Google Scholar 

  33. S. Forsén, E. Thulin, and H. Lilja, FEBS Lett., 104, pp. 123–126 (1979).

    Google Scholar 

  34. S. Forsén, E. Thulin, T. Drakenberg, J. Krebs, and K. Seamon, FEBS Lett., 117, pp. 189–194 (1980).

    Google Scholar 

  35. J. L. Sudmeier, S. J. Bell, M. C. Storm, and M. F. Dunn, Science, 212, pp. 560–562 (1981).

    Google Scholar 

  36. D. B. Bailey and P. D. Ellis, unpublished results.

    Google Scholar 

  37. I. M. Armitage, A. J. M. Schoot-Uiterkamp, J. F. Chlebowski, and J. E. Coleman, J. Magn. Reson., 29, pp. 375–392 (1973).

    Google Scholar 

  38. J. L. Sudmeier and S. J. Bell, J. Am. Chem. Soc., 99, pp. 4499–4500 (1977).

    Google Scholar 

  39. J. L. Evelhoch, D. F. Bocian, and J. L. Sudmeier, Biochem., 20, pp. 4951–4954 (1981).

    Google Scholar 

  40. N. B. H. Jonsson, L. E. A. Tibell, J. L. Evelhoch, S. J. Bell, and J. L. Sudmeier, Proc. Natl. Acad. Sci. (USA), 77, pp. 3269–3272 (1980).

    Google Scholar 

  41. A. J. M. Schoot-Uiterkamp, I. M. Armitage, and J. E. Coleman, J. Biol. Chem., 255, pp. 3911–3917 (1980).

    Google Scholar 

  42. I. M. Armitage, R. T. Pajer, A. J. M. Schoot-Uiterkamp, J. F. Chlebowski, and J. E. Coleman, J. Am. Chem. Soc., 98, pp. 5710–5711 (1976).

    Google Scholar 

  43. D. B. Bailey, P. D. Ellis, and J. A. Fees, Biochem., 19, pp. 591–596 (1980).

    Google Scholar 

  44. B. R. Bobsein and R. J. Myers, J. Biol. Chem., 256, pp. 5313–5316 (1981).

    Google Scholar 

  45. R. W. Briggs and I. M. Armitage, J. Biol. Chem., 257, pp. 1259–1262 (1982).

    Google Scholar 

  46. J. D. Otvos and I. M. Armitage, J. Am. Chem. Soc., 101, pp. 7734–7736 (1979).

    Google Scholar 

  47. K. T. Suzuki and T. Maitani, Experientia, 34, pp. 1449–1450 (1978).

    Google Scholar 

  48. P. J. Sadler, A. Bakka, and P. J. Beynon, FEBS Lett., 94, pp. 315–318 (1978).

    Google Scholar 

  49. J. D. Otvos, R. W. Olafson, and I. M. Armitage, J. Biol. Chem., 257, pp. 2427–2431 (1982).

    Google Scholar 

  50. J. D. Kennedy and W. McFarlane, J. Chem. Soc. Perkin 2, p. 1187 (1977).

    Google Scholar 

  51. A. D. Cardin, P. D. Ellis, J. D. Odom, and J. W. Howared, Jr., J. Am. Chem. Soc., 97, pp. 1672–1679 (1975).

    Google Scholar 

  52. E. A. Jeffery and T. Mole, Austral. J. Chem., 21, pp. 1187–1196 (1968).

    Google Scholar 

  53. W. Bremser, M. Winokur, and J. D. Roberts, J. Am. Chem. Soc., 92, p. 1080 (1970).

    Google Scholar 

  54. H. J. Jakobsen, P. D. Ellis, R. R. Inners, and C. F. Jensen, J. Am. Chem. Soc., in press.

    Google Scholar 

  55. H. Dreeskamp and K. Hildenbrand, Z. Naturforsch, Teil A., 23, p. 940 (1968).

    Google Scholar 

  56. A. D. Cardin, P. D. Ellis, J. D. Odom, and J. W. Howard, Jr., J. Am. Chem. Soc., 97, p. 1672 (1975).

    Google Scholar 

  57. R. Hagan, J. P. Warren, D. H. Hunter, and J. D. Roberts, J. Am. Chem. Soc., 95, pp. 5712–5716 (1973).

    Google Scholar 

  58. H. Müller and L. Rösch, J. Organometal. Chem., 133, pp. 1–6 (1977).

    Google Scholar 

  59. H. Schmidbaur, H. J. Füller, V. Bejenke, A. Franck, and G. Huttner, Chem. Ber., 110, pp. 3536–3543 (1977).

    Google Scholar 

  60. H. J. Jakobsen, P. D. Ellis, R. R. Inners, and C. F. Jensen, J. Am. Chem. Soc., in press.

    Google Scholar 

  61. R. Hagen, J. P. Warren, D. H. Hunter, and J. D. Roberts, J. Am. Chem. Soc., 95, pp. 5712–5716 (1973).

    Google Scholar 

  62. D. D. Dominguez, M. M. King, and J. H. C. Yeh, J. Magn. Reson., 32, pp. 161–165 (1978).

    Google Scholar 

  63. H. J. Jakobsen, P. D. Ellis, R. R. Inners, and C. F. Jensen, J. Am. Chem. Soc., unpublished.

    Google Scholar 

  64. J. L. Evelhoch, D. F. Bocian, and J. L. Sudmeier, Biochem., 20, pp. 4951–4954 (1981).

    Google Scholar 

  65. D. Dakternieks, Austral. J. Chem., 35, pp. 469–481 (1982).

    Google Scholar 

  66. S. O. Grim, E. D. Walton, and L. C. Satek, Can. J. Chem., 58, pp. 1476–1479 (1980).

    Google Scholar 

  67. G. K. Carson and P. A. W. Dean, Inorg. Chim. Acta, 66, pp. 37–39 (1982).

    Google Scholar 

  68. M. Holz, R. B. Jordan, and M. D. Zeidler, J. Magn. Reson., 22, pp. 47–52 (1976).

    Google Scholar 

  69. J. Soulati, K. L. Henold, and J. P. Oliver, J. Am. Chem. Soc., 93, pp. 5694–5698 (1971).

    Google Scholar 

  70. W. Bremser, M. Winokur, and J. R. Roberts, J. Am. Chem. Soc., 92, p. 1080 (1970).

    Google Scholar 

  71. E. A. Jeffery and T. Mole, Austral. J. Chem., 21, p. 1187 (1968).

    Google Scholar 

  72. K. Henold, J. Soulati, and J. P. Oliver, J. Am. Chem. Soc., 91, 3171–3174 (1969).

    Google Scholar 

  73. E. D. Becker, “High Resolution NMR: Theory and Chemical Applications,” Academic Press, 1969, Appendix A.

    Google Scholar 

  74. J. H. Noggle and R. E. Shirmer, “The Nuclear Overhauser Effect,” Academic Press, New York, 1971.

    Google Scholar 

  75. A. Abragam, “The Principles of Nuclear Magnetism,” from “The International Series of Monographs on Physics,” W. C. Marshall and D. H. Wilkinson, editors, Clarendon Press, 1976, Chapter 5.

    Google Scholar 

  76. N. F. Ramsey, Phys. Rev., 78, pp. 699–703 (1950).

    MATH  Google Scholar 

  77. M. Mehring, “High Resolution NMR Spectroscopy in Solids,” from “NMR Principles and Progress #11,” P. Diehl, E. Fluck, and R. Kosfeld, Eds., Springer-Verlag, 1976, Chapter 5.

    Google Scholar 

  78. A. Saika and C. P. Slichter, J. Chem. Phys., 22, p. 26 (1954).

    Google Scholar 

  79. J. A. Pople, W. G. Schneider, and H. J. Bernstein, “High Resolution Nuclear Magnetic Resonance,” McGraw-Hill, New York, 1959.

    Google Scholar 

  80. M. Karplus and J. A. Pople, J. Chem. Phys., 38, p. 2803 (1963).

    Google Scholar 

  81. R. Ditchfield, J. Chem. Phys., 56, p. 5688 (1972).

    Google Scholar 

  82. R. Ditchfield, Chem. Phys. Lett., 15, p. 203 (1972).

    Google Scholar 

  83. R. Ditchfield and P. D. Ellis, Chem. Phys. Lett., 17, p. 342 (1972).

    Google Scholar 

  84. R. A. Haberkorn, L. Que, Jr., W. O. Gillum, R. H. Holm, C. S. Liu, and R. C. Lord, Inorg. Chem., 15, p. 2408 (1976).

    Google Scholar 

  85. G. E. Maciel and M. Borzo, J. C. S. Chem. Commun., p. 394 (1973).

    Google Scholar 

  86. R. J. Kostelnik and A. A. Bothner-by, J. Magn. Reson., 14, pp. 141–151 (1974).

    Google Scholar 

  87. A. D. Cardin, P. D. Ellis, J. D. Odom, and J. W. Howard, Jr., J. Am. Chem. Soc., 97, p. 1672 (1975).

    Google Scholar 

  88. H. Ohtaki, M. Maeda, and S. Ito, Bull. Chem. Soc. Jpn., 47, p. 2217 (1974).

    Google Scholar 

  89. M. Tsurumi, M. Maeda, and H. Ohtaki, Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 45, p. 367 (1977).

    Google Scholar 

  90. J. W. Macklin and R. A. Plane, Inorg. Chem., 9, p. 821 (1970).

    Google Scholar 

  91. J. J. H. Ackerman, T. V. Orr, V. J. Bartuska, and G. E. Maciel, J. Am. Chem. Soc., 101, pp. 341–347 (1979).

    Google Scholar 

  92. T. Drakenberg, N. O. Bjork, and R. Portanova, J. Phys. Chem., 82, pp. 2423–2426 (1978).

    Google Scholar 

  93. R. Colton and D. Dakternieks, Austral. J. Chem., 33, pp. 2405–2409 (1980).

    Google Scholar 

  94. K. Hildenbrand and H. Dreeskarnp, Z. Physik. Chem. N.F., 69, pp. 171–182 (1970).

    Google Scholar 

  95. G. E. Coates and A. Lauder, J. Chem. Soc., A, p. 264 (1966).

    Google Scholar 

  96. J. D. Kennedy and W. McFarlane, J. Chem. Soc. Perkin 2, 1187 (1977).

    Google Scholar 

  97. C. J. Turner and R. F. M. White, J. Magn. Reson., 26, pp. 1–5 (1977).

    Google Scholar 

  98. G. K. Carson, P. A. W. Dean, and M. J. Stillman, Inorg. Chim. Acta, 56, pp. 59–71 (1981).

    Google Scholar 

  99. G. K. Carson and P. A. W. Dean, Inorg. Chim. Acta, 66, pp. 37–39 (1982).

    Google Scholar 

  100. A. M. Bond, R. Colton, D. Dakternieks, M. L. Dillon, J. Hauenstein, and J. E. Moir, Austral. J. Chem., 34, 1393–1400 (1981).

    Google Scholar 

  101. P. A. W. Dean, Can. J. Chem., 59, p. 3221 (1981).

    Google Scholar 

  102. H. J. Jakobsen, P. D. Ellis, R. R. Inners, and C. F. Jensen, J. Am. Chem. Soc., in press.

    Google Scholar 

  103. D. D. Dominguez, M. M. King, and H. J. C. Yeh, J. Magn. Reson., 32, pp. 161–165 (1978).

    Google Scholar 

  104. R. Hagen, J. P. Warren, D. H. Hunter, and J. D. Roberts, J. Am. Chem. Soc., 95, p. 5712 (1973).

    Google Scholar 

  105. E. H. Curzon, N. Herron, and P. Moore, J. Chem. Soc. Dalton Trans., pp. 721–725 (1980).

    Google Scholar 

  106. C. C. Bryden and C. N. Reilley, J. Am. Chem. Soc., 104, pp. 2697–2699 (1982).

    Google Scholar 

  107. M. Cannas, G. Marongiu, and G. Saba, J. Chem. Soc. Dalton, p1 2090 (1980).

    Google Scholar 

  108. C. F. Jensen, S. Deshmukh, H. J. Jakobsen, R. R. Inners, and P. D. Ellis, J. Am. Chem. Soc., 103, pp. 3659–3666 (1981).

    Google Scholar 

  109. T. Maitani and K. T. Suzuki, Inorg. Nucl. Chem. Lett., 15, pp. 213–217 (1979).

    Google Scholar 

  110. E. A. H. Griffith and E. L. Amma, J. C. S. Chem. Commun., p. 1013 (1979).

    Google Scholar 

  111. D. Dakternieks, Austral. J. Chem., 35, pp. 469–481 (1982).

    Google Scholar 

  112. R. Colton and D. Dakternieks, Austral. J. Chem., 33, pp. 1677–1684 (1980).

    Google Scholar 

  113. S. O. Grim, E. D. Walton, and L. C. Satek, Can. J. Chem., 58, pp. 1476–1479 (1980).

    Google Scholar 

  114. B. L. Vallee and D. D. Ulmer, Ann. Rev. Biochem., pp. 91–128 (1972).

    Google Scholar 

  115. D. B. Bailey, P. D. Ellis, and J. A. Fee, Biochem., 19, pp. 591–596 (1980).

    Google Scholar 

  116. A. R. Palmer, D. B. Bailey, W. D. Behnke, A. D. Cardin, P. P. Yang, and P. D. Ellis, Biochem., 19, pp. 5063–5070 (1980).

    Google Scholar 

  117. D. B. Bailey, P. D. Ellis, A. D. Cardin, and W. D. Behnke, J. Am. Chem. Soc., 100, p. 5236 (1978).

    Google Scholar 

  118. A. Cavé, J. Parello, T. Krakenberg, E. Thulin, and B. Lindman, FEBS Lett., 100, p. 148 (1979).

    Google Scholar 

  119. T. Drakenberg, B. Lindman, A. Cavé, and J. Parello, FEBS Lett., 92, p. 346 (1978).

    Google Scholar 

  120. I. M. Armitage, A. J. M. S. Uiterkamp, J. F. Chlebowski, and J. E. Coleman, J. Magn. Reson., 29, pp. 375–392 (1978).

    Google Scholar 

  121. J. L. Evelhoch, D. F. Bocian, and J. L. Sudmeier, Biochem., 20, pp. 4951–4954 (1981).

    Google Scholar 

  122. N. B. H. Jonsson, L. A. E. Tibell, J. L. Evelhoch, S. J. Bell, and J. L. Sudmeier, Proc. Natl. Acad. Sci. (USA), 77, pp. 3269–3272 (1980).

    Google Scholar 

  123. J. L. Sudmeier and S. J. Bell, J. Am. Chem. Soc., 99, pp. 4499–4500 (1977).

    Google Scholar 

  124. I. M. Armitage, R. T. Pajer, A. J. M. Schoot Uiterkamp, J. F. Chlebowski, and J. E. Coleman, J. Am. Chem. Soc., 98, p. 5710 (1976).

    Google Scholar 

  125. A. J. M. S. Uiterkamp, I. M. Armitage, and J. E. Coleman, J. Biol. Chem., 255, pp. 3911–3917 (1980).

    Google Scholar 

  126. B. R. Bobsein and R. J. Myers, J. Am. Chem. Soc., 102, pp. 2454–2455 (1980).

    Google Scholar 

  127. J. D. Otvos and I. M. Armitage, Biochem., 19, pp. 4031–4043 (1980).

    Google Scholar 

  128. J. F. Chlebowski, I. M. Armitage, and J. E. Coleman, J. Biol. Chem., 252, pp. 7053–7061 (1977).

    Google Scholar 

  129. J. D. Otvos, R. W. Olafson, and I. M. Arraitage, J. Biol. Chem., 257, pp. 2427–2431 (1982).

    Google Scholar 

  130. R. W. Briggs and I. M. Armitage, J. Biol. Chem., 257, pp. 1259–1262 (1982).

    Google Scholar 

  131. J. D. Otvos and I. M. Armitage, J. Am. Chem. Soc., 101, pp. 7734–7736 (1979).

    Google Scholar 

  132. P. J. Sadler, A. Bakke, and P. J. Beynon, FEBS Lett., 94, pp. 315–318 (1978).

    Google Scholar 

  133. K. T. Suzuki and T. Maitani, Experienta, 34, p. 1449 (1978).

    Google Scholar 

  134. B. R. Bobsein and R. J. Meyers, J. Biol. Chem., 256, pp. 5313–5316 (1981).

    Google Scholar 

  135. S. Forsén, E. Thulin, T. Drakenberg, J. Krebs, and K. Seamon, FEBS Lett., 117, pp. 189–194 (1980).

    Google Scholar 

  136. S. Forsén, E. Thulin, and H. Lilja, FEBS Lett., 104, pp. 123–126 (1979).

    Google Scholar 

  137. J. L. Sudmeier, S. J. Bell, M. C. Storm, and M. F. Dunn, Science, 212, pp. 560–562 (1981).

    Google Scholar 

  138. J. Soulati, K. L. Henold, and J. P. Oliver, J. Am. Chem. Soc., 93, pp. 5694–5698 (1971).

    Google Scholar 

  139. W. Bremser, M. Winokur, and J. D. Roberts, J. Am. Chem. Soc., 1080 (1970).

    Google Scholar 

  140. K. Henold, J. Soulati, and J. P. Oliver, J. Am. Chem. Soc., 91, pp. 3171–3174 (1969).

    Google Scholar 

  141. C. R. McCoy and A. L. Allred, J. Am. Chem. Soc., 84, pp. 912–915 (1961).

    Google Scholar 

  142. E. A. Jeffery and T. Mole, Austral. J. Chem., 21, pp. 1187–1196 (1968).

    Google Scholar 

  143. M. Holz, R. B. Jordan, and M. D. Zeidler, J. Magn. Reson., 22, pp. 47–52 (1976).

    Google Scholar 

  144. M. J. B. Ackerman and J. J. H. Ackerman, J. Phys. Chem., 84, pp. 3151–3153 (1980).

    Google Scholar 

  145. D. H. Rasmussen and A. P. MacKenzie in “Water Structure at the Water-Polymer Interface,” H. H. G. Jellinek, Ed., Plenum Press, New York, 1971, pp. 126–144.

    Google Scholar 

  146. D. Turnbull, J. Appl. Phys., 21, pp. 1022–1028 (1950).

    Google Scholar 

  147. H. J. Jakobsen and P. D. Ellis, J. Phys. Chem., 85, pp. 3367–3369 (1981).

    Google Scholar 

  148. Reference 3, Chapter VIII, p. 274.

    Google Scholar 

  149. S. H. Forsén and R. A. Hoffman, J. Chem. Phys., 39, p. 2892 (1963); S. H. Forsén and R. A. Hoffman, ibid., 40, p. 1189 (1964); S. H. Forsén and R. A. Hoffman, ibid., 45, p. 2049 (1966).

    Google Scholar 

  150. E. Kreyszig, “Advanced Engineering Mathematics,” John Wiley and Sons, Inc., New York, 1962, Chapter 1, p. 53.

    MATH  Google Scholar 

  151. R. E. Brown, III, C. F. Brewer, and S. H. Koenig, Biochem., 16, p. 3883 (1977); S. H. Koenig, C. F. Brewer, and R. D. Brown, III, ibid., 17, (1978); C. F. Brewer and R. D. Brown, III, ibid., 18, p. 2555 (1979).

    Google Scholar 

  152. G. E. Maciel, Top. Carbon 13 NMR Spectrosc, 1, p. 54 (1974).

    Google Scholar 

  153. A. Nolle, Z. Naturforsch., 33a, p. 666 (1978).

    Google Scholar 

  154. J. C. Slater, “Quantum Theory of Atomic Structure,” McGraw Hill Co., 1960, Chapter 25.

    Google Scholar 

  155. Y. Nomura, Y. Takeuchi, and N. Nakagawa, Tetrahedron Lett., 8, p. 639 (1969); I. Morishima, K. Endo, and T. Yonezawa, J. Chem. Phys., 59, p. 3356 (1973); A. A. Cheremisin and P. V. Sehastnev, J. Magn. Reson., 40, pp. 459-468 (1980); P. D. Ellis, unpublished results.

    Google Scholar 

  156. P. D. Ellis, R. R. Inners, and J. H. Jakobsen, J. Phys. Chem., 86, pp. 1506–1508 (1982).

    Google Scholar 

  157. A. Pines, M. E. Gibby, and J. S. Waugh, J. Chem. Phys., 59, p. 569 (1973).

    Google Scholar 

  158. J. Schaefer and E. O. Stejskal, J. Am. Chem. Soc., 98, p. 1031 (1976).

    Google Scholar 

  159. F. D. Doty and P. D. Ellis, Rev. Sci. Instrum., 52, p. 1868–1875 (1981).

    Google Scholar 

  160. U. Haeberlen, “High Resolution NMR in Solids,” Supplement 1 in “Advances in Magnetic Resonance,” J. S. Waugh, Ed., Academic Press, New York, 1976.

    Google Scholar 

  161. M. Mehring, “High Resolution NMR Spectroscopy in Solids,” Springer-Verlag, New York, 1976.

    Google Scholar 

  162. P. D. Ellis and H. Bildsøe, unpublished results.

    Google Scholar 

  163. M. Marciq and J. S. Waugh, J. Chem. Phys., 70, pp. 3300–3316 (1979).

    Google Scholar 

  164. J. Herzfeld and A. E. Berger, J. Chem. Phys., 73, p. 6021 (1980).

    Google Scholar 

  165. K. M. Smith, Ed., “Porphyrins and Metalloporphyrins,” Elsevier, Amsterdam, Chapter 8, 1975.

    Google Scholar 

  166. P. Rodesiler and E. L. Amma, unpublished results.

    Google Scholar 

  167. R. Ditchfield and P. D. Ellis, Top. Carbon-13 NMR Spectrosc., 1 (1974).

    Google Scholar 

  168. P. D. Majors and P. D. Ellis, unpublished results.

    Google Scholar 

  169. The single exception to this chemical shift range is the shift observed for the calcium site in bovine insulin (51): its chemical shift is −36 ppm. The X-ray data are definitive in this case for the Ca+2 to be six-coordinate, T. Blundell, G. Dodson, D. Hodgkin, and D. Mercola, Adv. Protein Chem., 26, p. 279 (1972).

    Google Scholar 

  170. A. Nolle, Z. Naturforsch, 33a, p. 666 (1973).

    Google Scholar 

  171. J. J. Ackerman, T. V. Orr, V. J. Bartuska, and G. E. Maciel, J. Am. Chem. Soc., 101, p. 341 (1979).

    Google Scholar 

  172. T. T. P. Cheung, L. E. Worthington, L. E. Murphy, P. DuPois Murphy, and B. C. Gernstein, J. Magn. Reson., 41, p. 158 (1980).

    Google Scholar 

  173. P. DuPois Murphy and B. C. Gernstein, J. Am. Chem. Soc., 103, p. 3282 (1981).

    Google Scholar 

  174. P. DuPois Murphy, W. C. Stevens, T. T. P. Cheung, S. Lacelle, B. C. Gernstein, and D. M. Kurtz, Jr., J. Am. Chem. Soc., 103, p. 4400 (1981).

    Google Scholar 

  175. P. G. Mennit, M. P. Shatlock, V. J. Bartuska, and G. E. Maciel, J. Phys. Chem., 85, p. 2086 (1981).

    Google Scholar 

  176. R. R. Inners, F. D. Doty, A. R. Garber, and P. D. Ellis, J. Magn. Reson., 45, p. 503 (1981).

    Google Scholar 

  177. P. D. Ellis, R. R. Inners, and H. J. Jakobsen, J. Phys. Chem., 86, p. 1506 (1982).

    Google Scholar 

  178. H. J. Jakobsen, P. D. Ellis, R. R. Inners, C. F. Jensen, J. Am. Chem. Soc., in press.

    Google Scholar 

  179. R. S. Honkonen, F. D. Doty, and P. D. Ellis, submitted to J. Am. Chem. Soc.

    Google Scholar 

  180. R. S. Honkonen and P. D. Ellis, submitted to J. Am. Chem. Soc.

    Google Scholar 

  181. D. A. Langs, C. R. Hare, Chem. Commun., 890 (1967). The authors would like to thank C. R. Hare for kindly supplying the atomic coordination for this structure.

    Google Scholar 

  182. B. Malkovic, B. Rebov, B. Zelenko, and S. W. Peterson, Acta Cryst., 21, p. 719 (1966).

    Google Scholar 

  183. J. A. Weil, T. Buck, and J. E. Clapp, Advan. Magn. Reson., 7, p. 183 (1973).

    Google Scholar 

  184. In this paper, distinguishable indicates tensors which have, at minimum, differing eigenvectors. Distinct tensors are defined to have different eigenvalues. Thus, tensors with identical eigenvalues may be distinguishable.

    Google Scholar 

  185. This statement follows from the definition of the shielding tensor (80) and the nature of angular momentum operators.

    Google Scholar 

  186. M. L. Post and J. Trotter, J. Chem. Soc., Dalton Trans., 674 (1972).

    Google Scholar 

  187. A. Hempell, S. E. Hull, R. Ram, and M. P. Gupta, Acta Cryst., B35, p. 2215 (19798); D. E. Woessner, J. Chem. Phys., 36, p. 1 (1962); D. E. Woessner, ibid., 37, p. 647 (1962); H. Shimizu, ibid., 40, p. 754 (1964); D. Wallach, ibid., 47, p. 5258 (1967); T. T. Bopp, ibid., 47, p. 3621 (1967); D. E. Woessner, B. S. Snowden, Jr., and E. T. Strom, Mol. Phys., 14, p. 265 (1968); W. T. Huntress, Jr., J. Chem. Phys., 48, p. 3524 (1968); W. T. Huntress, Jr., J. Phys. Chem., 73, p. 103 (1969); D. Wallach and W. T. Huntress, Jr., J. Chem. Phys., 50, p. 1219 (1969); J. Jonas and T. M. DiGennaro, ibid., 50, p. 2392 (1969); W. T. Huntress, Adv. Magn. Reson., 4, p. 1 (1970).

    Google Scholar 

  188. P. D. Ellis and J. D. Potter, submitted to J. Biol. Chem.

    Google Scholar 

  189. There are several extensive reviews of Troponin C biochemistry: we will refer the reader to a recent review by J. D. Potter and J. D. Johnson in “Calcium and Cell Function”, Vol. II, Academic Press, New York, 1982, Chapter 5, and references cited within.

    Google Scholar 

  190. J. D. Potter and J. Gergely, J. Biol. Chem., 250, pp. 4628–4683 (1975).

    Google Scholar 

  191. T. Anderson, T. Drakenberg, S. Forsén, E. Thulin, and M. Sward, J. Am. Chem. Soc., 104, pp. 576–580 (1982) and references cited within.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D. Reidel Publishing Company

About this chapter

Cite this chapter

Ellis, P.D. (1983). Cadmium-113 Nuclear Magnetic Resonance Spectroscopy in Bioinorganic Chemistry. A Representative Spin 1/2 Metal Nuclide. In: Lambert, J.B., Riddell, F.G. (eds) The Multinuclear Approach to NMR Spectroscopy. NATO ASI Series, vol 103. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7130-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7130-1_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7132-5

  • Online ISBN: 978-94-009-7130-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics