Skip to main content

A Non-Linear Feedback Model for Outer-Hair-Cell Stereocilia and its Implications for the Response of the Auditory Periphery

  • Conference paper
Mechanics of Hearing

Abstract

The direct incorporation of negative resistance and nonlinear damping in a mechanical model of the basilar membrane (BM) may be used to. correlate BM response data as well as the properties of stimulated and spontaneous emissions in the external auditory meatus (S. Koshigoe and A. Tubis, 1982). We have tried to remedy the ad hoc nature of this formal “black box” approach by seeking a microscopic basis for the assumed nonlinear and active BM response. Such a basis is suggested by evidence that mechanical cochlear function is strongly influenced by efferent innervation of outer hair cells (OHC) (D.C. Mountain, 1980; J.H. Siegel and D.O. Kim, 1982). We consider the chain: OHC stereocilia deflection → nonlinear change in receptor potential (A.J. Hudsneth and P.P. Corey, 1977)→induced feedback force on the BM as the primary origin of nonlinear active cochlear response. Our proposed model is qualitatively compatible with data on cochlear emissions, nonlinear cochlear response, combination-tone psychophysics, and changes in cochlear response induced by COCB stimulation or variation of the endocochlear potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Davis, H. (1965). A model for transducer action in the cochlea, Cold Spring Harbor Syrrip. Quant. Biol. 30, 181–189.

    Article  Google Scholar 

  • Flock, A., and Cheung, H.C. (1977). Actin filaments in sensory hairs of inner ear receptor cells, J. Cell. Biol. 75, 339–343.

    Article  Google Scholar 

  • Furst, M., and Goldstein, J.L. (1982). A cochlear nonlinear transmission-line model compatible with combination tone psychophysics, J. Acoust. Soc. Am. 72, 717–726.

    Article  Google Scholar 

  • Gold, T. (1948). Hearing II. The physical basis of the action of the cochlea, Proc. R. Soc. B135, 492–498.

    Google Scholar 

  • Hall, J.L. (1974). Two-tone distortion products in a nonlinear model of the basilar membrane, J. Acoust. Soc. Am. 56, 1818–1828.

    Article  Google Scholar 

  • Hubbard, A.E., and Geisler, C.D. (1972). A hybrid-computer model of the cochlear partition, J. Acoust. Soc. Am. 51, 1895–1903.

    Article  Google Scholar 

  • Hudspeth, A.J., and Corey, D.P. (1977). Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli, Proc. Natl. Acad. Sci. U.S.A. 74, 2407–2411.

    Article  Google Scholar 

  • Kemp, D.T. (1978). Stimulated acoustic emissions from the human auditory system, J. Acoust. Soc. Am. 64, 1386–1391.

    Article  Google Scholar 

  • Khanna, S.M., and Leonard, D.G.B. (1982). Basilar membrane tuning in the cat cochlea, Science 215, 305–306.

    Article  Google Scholar 

  • Kim, D.O., Molnar, C.E., and Pfeiffer, R.R. (1973). A system of nonlinear differential equations modeling basilar-membrane motion, J. Acoust. Soc. Am. 54, 1517–1529.

    Article  Google Scholar 

  • Klinke, R., and Galley, N. (1974). Efferent innervation of vestibular and auditory receptors, Physiol. Revs. 54, 316–357.

    Google Scholar 

  • Koshigoe, S. and Tubis, A. (1982). Unified computational model of stimulated and spontaneous acoustic emissions in the external auditory meatus, J. Acoust. Soc. Am. Suppl. 1 71, S17.

    Google Scholar 

  • Koshigoe, S., Kwok, W., and Tubis, A. (1982). A nonlinear feedback model for mechanical response of outer-hair-cell stereocilia, J. Acoust. Soc. Am. Suppl. 1 72, S47.

    Google Scholar 

  • Koshigoe, S., and Tubis, A. (1983). Frequency domain investigations of cochlear stability in the presence of active elements, to be published in J. Acoust. Soc. Am.

    Google Scholar 

  • Lim, D.J. (1980). Cochlear anatomy related to cochlear mechanics. A review, J. Acoust. Soc. Am. 67, 1686–1695.

    Article  Google Scholar 

  • Mountain, D.C. (1980). Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics, Science 210, 71–72.

    Article  Google Scholar 

  • Mountain, D. C., and Hubbard, A.E. (1982). Injection of the ac current into scala media alters the sound pressure at the tympanic membrane: variations with electrical stimulus parameters, J. Acoust. Soc. Am. Suppl. 1 71, S100.

    Article  Google Scholar 

  • Neely, S.T. (1981). Fourth-Order Partition Dynamics for a Two-Dimensional Model of the Cochlea, doctoral dissertation, Washington University, St. Louis, Missouri.

    Google Scholar 

  • Neely, S.T., and Kim, D.O. (1983). An active cochlear model showing sharp tuning and high sensitivity, Hearing Res. 9, 123–130.

    Article  Google Scholar 

  • Rhode, W.S., and Geisler, C.D. (1967). Model of the displacement between opposing points on the tectorial membrane and reticular lamina, J. Acoust. Soc. Am. 42, 185–190.

    Article  Google Scholar 

  • Russell, I.J., and Sellick, P.M. (1978). Intracellular studies of hair cells in the mammalian cochlea, J. Physiol. 284, 261–290.

    Google Scholar 

  • Sellick, P.M., Patuzzi, R. and Johnstone, B.M, (1982). Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique, J. Acoust. Soc. Am. 72, 131–141.

    Article  Google Scholar 

  • Siegel, J.H., and Kim, D.O. (1982), Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity, Hear Res. 6, 171–182.

    Article  Google Scholar 

  • Tilney, L.G., DeRosier, D.J., and Mulroy, M.J. (1980). The organization of actin filaments in the stereocilia of cochlear hair cells, J. Cell. Biol. 86, 244–259.

    Article  Google Scholar 

  • Tilney, L.G., Egleman, E., and DeRosier, D.J., and Saunders, J.C. (1983). Actin filaments, stereocilia and hair cells of the bird cochlea. II. The packing of actin filaments in the stereocilia and in the cuticular plate and what happens to the organization when the stereocilia are bent, preprint, University of Pennsylvania.

    Google Scholar 

  • Weiss, T.F., Mulroy, M.J., and Altmann, D.W. (1974). Intracellular responses to acoustic clicks in the inner ear of the alligator lizard, J. Acoust. Soc. Am. 55, 606–619.

    Article  Google Scholar 

  • Weiss, T.F. (1982). Bidirectional transduction in vertebrate hair cells: A mechanism for coupling mechanical and electrical process, Hear Res. 7, 353–360.

    Article  Google Scholar 

  • Wiederhold, M.L. (1967). A study of efferent inhibition of auditory nerve activity, doctoral dissertation, M.I.T., Cambridge, MA.

    Google Scholar 

  • Wilson, J.P., and Sutton, G.J. (1981). Acoustic correlates of tonal tinnitus. In: Tinnitus, edited by D. Evered, and G. Lawrenson, (Pitman Medical, London), Ciba Found. Symp. 85.

    Google Scholar 

  • Wit, H.P., Langevoort, J. C., and Ritsma, R.J. (1981). Freuqency spectra of cochlear acoustic emissions (Kemp-echoes), J. Acoust. Soc. Am. 70, 437–445.

    Article  Google Scholar 

  • Zurek, P.M. (1981). Spontaneous narrowband acoustic signals emitted by human ears, J. Acoust. Soc. Am. 69, 514–523.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Delft University Press, The Netherlands

About this paper

Cite this paper

Koshigoe, S., Tubis, A. (1983). A Non-Linear Feedback Model for Outer-Hair-Cell Stereocilia and its Implications for the Response of the Auditory Periphery. In: de Boer, E., Viergever, M.A. (eds) Mechanics of Hearing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6911-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6911-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6913-1

  • Online ISBN: 978-94-009-6911-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics