Skip to main content

The Molecular Basis of Ionic Selectivity in Macroscopic Systems

  • Chapter
Mass Transfer and Kinetics of Ion Exchange

Part of the book series: NATO ASI Series ((NSSE,volume 71))

Abstract

The purpose of this paper is to review the fundamental principles underlying ionic selectivity in “macroscopic” systems such as ion exchangers and ion exchange membranes, whose counterion concentrations are constrained by electroneutrality. I will bring up to date an earlier theory of equilibrium selectivity (1,2) so as to include the considerable progress that has occurred since 1961, particularly for species other than the Group Ia cations. However, I will not deal in detail with kinetic aspects of selectivity since these are more appropriately covered elsewhere in the context of biological membranes (3) which, because of their extreme thinness, can deviate from electroneutrality locally. Indeed, much of the progress in selectivity has occurred in the field of “microscopic” (e.g., biological) membranes, whose thickness (<100 Angstroms) is small relative to the Debye length so that the usual electroneutrality constraint does not apply locally. This has the consequence that, whereas the sites of macroscopic systems are always effectively “saturated” (i.e., completely occupied), those in biological membranes are often empty, so that they are not necessarily constrained to strict ion exchange behavior and are said to obey “independence” (3).

Supported by the USPHS (GM 24749) and the NSF (PCM 76-20605).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisenman, G. On the Elementary Atomic Origin of Equilibrium Ionic Specificity. In: Symposium on Membrane Transport and Metabolism. (New York, Academic Press, 1961), p. 163–179.

    Google Scholar 

  2. Eisenman, G. Cation Selective Glass Electrodes and Their Mode of Operation. Biophysical Journal 2, Part 2 (1962) 259–323.

    Article  CAS  Google Scholar 

  3. Eisenman, G. and Horn, R. Ionic Selectivity Revisited: The Role of Kinetic and Equilibrium Proccesses in Ion Permeation Through Channels. Journal of Membrane Biology (1982) In Press.

    Google Scholar 

  4. Glasstone, S., Laidler, K.J. and Eyring, I.I. The Theory of Rate Processes. (New York, McGraw-Hill Book Company, 1941).

    Google Scholar 

  5. Hille, B. Ionic Selectivity of Na and K Channels of Nerve Membranes. In: Membranes--A Series of Advances, Chap. 4. (New York, Marcel Dekker, 1975), p. 255–323.

    Google Scholar 

  6. Hober, R. Physical Chemistry of Cells and Tissues. (Philadelphia, Blakiston, 1945).

    Google Scholar 

  7. Wiegner, G. and Jenny, H. Ueber Basenaustausch an Permutiten. Kolloid Zeitschrift 42 (1927) 268–272.

    Article  Google Scholar 

  8. Jenny, H. Studies on the Mechanism of Ionic Exchange in Colloidal Aluminum Silicates. Journal of physiological Chemistry 36 (1932) 2217–2258.

    Article  CAS  Google Scholar 

  9. Bungenberg de Jong, H.G. In: Colloid Science, (Amsterdam, Elsevier Publishing Company, 2, 1919) p. 287.

    Google Scholar 

  10. Gregor, H.P., and Bregman, J.I. Studies on Ino-Exchange Resins. IV. Selectivity Coefficients of Various Cation Exchnagers Towards Univalent Cations. Journal of colloid science 6 (1951) 323–347.

    Article  CAS  Google Scholar 

  11. Eisenman, G., Rudin, D.O. and Casby, J.U. Principles of Specific Ion Interactions. In: 10th Annual Conference on Electrical Techniques in Medicine and Biology of the A.I.E.E., I. S.A., and I.R.E. (1957) Boston.

    Google Scholar 

  12. Mattock, G. pH Measurement and Titration. (London, Hey wood and Co. 1961), p. 130–134.

    Google Scholar 

  13. Eisenman, G., Rudin, D.O. and Casby, J.U. Glass Electrode for Measuring Sodium ion. Science 126 (1957) 831–834.

    Article  CAS  Google Scholar 

  14. Ling, G.N. (1962). “A Physical Theory of the Living State.” Ginn (Blaisdell), Boston, Massachusetts.

    Google Scholar 

  15. Eisenman, G. Some Elementary Factors Involved in Specific Ion Permeation. Proceedings of the XXIIIrd International Congress of Physiological Sciences, Tokyo 87 (1965) 489–506.

    Google Scholar 

  16. Rossini, F.E., Wagman, D.D., Evans, W.H., Levine, S. and Jaffe, I. Selected Values of Chemical Thermodynamic Properties. Circular of the National Bureau of Standards, No. 500. (Washington, D.C., U. S. Gov. Printing Office, 1951).

    Google Scholar 

  17. Born, M. and Lande, A. The Calculation of the Compressibility of Cubic Crystals from the Space Lattice Theory. Verh. dtsch. phys. Ges. 20 (1918) 210

    CAS  Google Scholar 

  18. Latimer, W.M., Pitzer, K.S. and Slansky, C.M. The Free Energy of Hydration of Gaseous Ions, and the Absolute Potential of the Normal Calomel Electrode. Journal of Chemical Physics 7 (1939) 108–111.

    Article  CAS  Google Scholar 

  19. Pauling, L. The Nature of the Chemical Bond. (Ithaca, Cornell University Press, 1948).

    Google Scholar 

  20. Gaydon, A.G. Dissociation Energies and Spectra of Diatomic Molecules. (New York, Dover, 1950).

    Google Scholar 

  21. Bronsted, J.N. Studies on Solubility. I. The Solubility of Salts in Salt Solutions. Journal of American Chemical Society 42 (1920) 761–786.

    Article  CAS  Google Scholar 

  22. Syrkin, Y.K. and Dyatkina, M.E. Structure of Molecules and the Chemical Bond. (London, Butterworths, 1950).

    Google Scholar 

  23. Cruickshank, E.H. and Meares, P. The Thermodynamics of Cation Exchange. Part 2-Comparison between Resins and Concentrated Chloride Solutions. Trans. Faraday Society 53 (1957) 1299–1308.

    Article  CAS  Google Scholar 

  24. Robinson, R.A. and Stokes, R.H. Electrolyte Solutions, 2nd edition (New York, Academic Press, 1959).

    Google Scholar 

  25. Scatchard, G. Concentrated Solutions of Strong Electrolites. Chemical Review 19 (1936) 309–327.

    Article  CAS  Google Scholar 

  26. Glueckauf, E. and Kitt, G.P. A Theoretical treatment of Cation Exchangers III. The Hydration of Cations in Polystryrene Sulpjonates. Proceedings Royal Society 228A (1955) 322–341.

    Article  Google Scholar 

  27. Harris, F.E. and Rice, S.A. A Model for Ion Binding and Exchange in Polyelectrolyte Solutions and Gels. Journal of physiological Chemistry 61 (1957) 1360–64.

    Article  CAS  Google Scholar 

  28. Kossiokoff, A. and Harker, D. The calculation of the Ionization Constants of Inorganic Oxygen Acids From Their Structures. Journal of American Chemical Society 60 (1938) 2047–2055.

    Article  Google Scholar 

  29. Ricci, J.E. The Aqueous Ionization Constants of Inorganic Oxygen Acids. Journal of American Chemical Society 70 (1948) 109–113.

    Article  CAS  Google Scholar 

  30. Eisenman, G. The Molecular Basis for Ion Selectivity and its Possible Bearing on the Neurobiology of Lithium. Neurosciences Research Program Bulletin, The Neurobiology of Lithium 714 (1976) 154–161.

    Google Scholar 

  31. Eisenman, G. and Krasne, S. the Ion Selectivity of Carrier Molecules, Membranes and Enzymes. MTP International Review of Science, Biochemistry Series. (London, Butterworths, 1975), p. 27–59

    Google Scholar 

  32. Hille, B. Potassium Channels in Myelinated Nerve. Journal of General Physiology 61 (1973) 669–686.

    Article  CAS  Google Scholar 

  33. Hille, B. The Permeability of the Sodium Channel to Organic Cations in Myelinated Nerve. Journal of General Physiology 58 (1971) 599–619.

    Article  CAS  Google Scholar 

  34. Diamond, J.M. and Wright, E. Biological membranes: the physical basis of ion and non-electrolyte specificity. Annual Review of Physiology 31 (1969) 581–646.

    Article  CAS  Google Scholar 

  35. Truesdell, A.H. Theory of Divalent-Cation Exchange Selectivity. Geological Society of America Special Paper 76 (1964) 170a.

    Google Scholar 

  36. Sherry, H.S. The Ion-Exchange Properties of Zeolites. In: Ion Exchange (New York, Marcel Dekker, 1969), p. 89–133.

    Google Scholar 

  37. Simon, W. and Morf, W.E. Alkali Cation Specificity of Carrier Antibiotics and Their Behavior in Bulk Membranes. In: Membranes, A Series of Advances. G. Eisenman, Ed., Vol. 2 (New York, Marcel Dekker, 1973), p. 329–375.

    Google Scholar 

  38. Boari, G., Liberti, L., Merli, C., and Passino, R. Exchange Equilibria on Anion Resins. Fourth International Symposium on Fresh Water from the Sea 3 (1973) 25–48.

    Google Scholar 

  39. Ovchinnikov, Yu. A., Ivanov, V.T., and Shkrob, A.M. Membrane-Active Complexones. (Amsterdam, Elsevier, 1974).

    Google Scholar 

  40. Pedersen, C.J. Cyclic Polyethers and Their Complexes with Metal Salts. Journal of the American Chemical Society 89 (1967) 7017–7036.

    Article  CAS  Google Scholar 

  41. Eisenman, G., Szabo, G., Ciani, S., McLaughlin, S. and Krasne, S. Ion Binding and Ion Transport Produced by Neutral Lipid-Soluble Molecules. In: Progress in Surface and Membrane Science 6 (1973) 139–241.

    Google Scholar 

  42. Morf, W.E. The Principles of Ion-Selective Electrodes and of Membrane Transport (Amsterdam, Elsevier, 1981).

    Google Scholar 

  43. Eisenman, G. Theory of Membrane Electrode Potentials: An Examination of the Parameters Determining the Selectivity of Solid and Liquid Ion and of Neutral Ion-Sequestering Molecules. National Bureau of Standards Special Publication 314 (1969) 1–56.

    Google Scholar 

  44. Krasne, S. and Eisenman, G. The Molecular Basis of Ion Selectivity. In: Membranes, A Series of Advances, G. Eisenman, Ed., Vol. 3 (New York, Marcel Dekker, 1973), p. 277–328.

    Google Scholar 

  45. Eisenman, G. and Margalit, R. Amphoteric Complexes of a Neutral Ionophore Having Tertiary Amide Ligands--A Model for Anion Binding to the Polypeptide Backbone. In: Frontiers of Biological Energetics. (New York, Academic Press, 1978), p. 1–11.

    Google Scholar 

  46. Margalit, R. and Eisenman, G. Some Binding Properties of the Peptide Backbone Inferred from Studies of a Neutral Non-Cyclic Carrier Having Imide Ligands. Proceedings of the Sixth American Peptide Symposium, 1979), p. 665–679.

    Google Scholar 

  47. Somsen, G. Solution and Solvation Enthalpies of Salts in Several Solvents. (Warsaw, Proceedings 1st International Conference on Calorimetry and Thermodynamics, 1969), p. 959–965.

    Google Scholar 

  48. Halliwell, H.F. and Nyburg, S.C. Enthalpy of Hydration of the Proton. Trans. Faraday Society 59 (1963) 1126–1140.

    Article  CAS  Google Scholar 

  49. Reichenberg, D. Ion-Exchange Selectivity, In Ion Exchange, A Series of Advances, J. A. Marinsky, Ed., Vol. 1 (New York, Marcel Dekker, 1966), p. 227–276.

    Google Scholar 

  50. Eberl, D.D. Alkali Cation Selectivity and Fixation by Clay Minerals. Clays and Clay Minerals 28 (1980) 161–172.

    Article  CAS  Google Scholar 

  51. Bernal, J.D. and Fowler, R.H. A Theory of Water and Ionic Solution, with Particular Reference fo Hydrogen and Hydroxyl Ions. J. Chem. Phys. 1 (1933) 531–548.

    Article  Google Scholar 

  52. Grell, E., Funck, T., and Eggers, F., Structure and Dynamic Properties of Ion-Specific Antibiotics. In Membranes, A Series of Advances, G. Eisenman, Ed., Vol. 3 (New York, Marcel Dekker, 1975), p. 1–126.

    Google Scholar 

  53. Gersh, N., Etchebest, de la Luz Rojas, O., and Pullman, A. A Theoretical Study of the Selective Alkali and Alkaline-Earth Cation Binding Properties of Valinomycin. International J. of Quantum Chemistry: Quantum Biology Symposium 8 (1981) 109–116.

    Article  Google Scholar 

  54. Gersh, N. and Pullman, A. A Theoretical Study of the Interaction of Nonactin With Na, K, and NH4. International J. of Quantum Chemistry (1982), In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Eisenman, G. (1983). The Molecular Basis of Ionic Selectivity in Macroscopic Systems. In: Liberti, L., Helfferich, F.G. (eds) Mass Transfer and Kinetics of Ion Exchange. NATO ASI Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6899-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6899-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6901-8

  • Online ISBN: 978-94-009-6899-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics